Published

2016-07-01

Antioxidant activity of two varieties of Ocimum basilicum L. for potential use in phytocosmetics

Actividad antioxidante de dos variedades de Ocimum basilicum L. para uso potencial en fitocosmética

DOI:

https://doi.org/10.15446/rfna.v69n2.59141

Keywords:

Antioxidant capacity, Ocimum basilicum L., var. cinammom, var. album, Volatile oils (en)
Capacidad antioxidante, Ocimum basilicum L., var. cinammom, var. album, Aceites volátiles (es)

Downloads

Authors

  • Andrea Maritza Vivas Castaño Fundación Universitaria del Área Andina - Seccional Pereira
  • Martha Cecilia Beltrán Cifuentes Fundación Universitaria del Área Andina - Seccional Pereira
  • Deisy Johanna Cañón Rincón Fundación Universitaria del Área Andina - Seccional Pereira
This investigation aimed to evaluate two varieties of Ocimum basilicum L., known as Basil, as potential raw material for the cosmetic industry, assessing their antioxidant properties, considering their industrial use in phytocosmetics. The antioxidant activity of essential oils (EOs) for the species Ocimum basilicum var. cinammom and var. album, were obtained by distillation steam using a Clevenger-type device. The antioxidant capacity was evaluated by the method of bleaching radical 1,1-diphenyl-2-picryl hydrazyl (DPPH) and the method of linoleic acid peroxidation (ferric thiocyanate). The EOs of the two species had significant antioxidant properties. The method of DPPH facilitated the evaluation of the antioxidant capacity versus the concentration of EOs, showing an efficient concentration at 10 ppm. On the other hand, the ferric thiocyanate method displayed an efficient inhibition up to 360 h (15 d). The obtained results demonstrated the antioxidant capacity of EOs in the investigation. The capacity was related to their chemical composition (phenylpropane and oxygenated monoterpenes). Therefore, EOs can be considered as a potential source in the field of phytocosmetics.
El presente estudio tuvo como finalidad valorar dos variedades de Ocimum basilicum L.; conocida con el nombre de Albahaca, como materia prima potencial para la industria cosmética, evaluando su propiedad antioxidante, con miras a un aprovechamiento industrial en fitocosmética. La actividad antioxidante de los aceites esenciales (AEs) de las especies Ocimum basilicum var. cinammom y var. album, se obtuvieron por destilación de arrastre de vapor tipo Clevenger. La capacidad antioxidante se evaluó por el método de la decoloración del radical 2,2-difenil-1-picril hidrazilo (DPPH) y el método de peroxidación del ácido linoleico (tiocianto férrico). Los AEs de las dos especies en estudio, presentan propiedades antioxidantes representativas. El método del DPPH permitió evaluar la capacidad antioxidante frente a la concentración de los AEs, demostrando una concentración eficiente a 10 ppm. Con el método del tiocianto férrico se encontró un máximo de inhibición eficiente a las 360 h (15 d). Los resultados obtenidos demuestran la capacidad antioxidante de los AEs en estudio, capacidad que está relacionada con la composición química (fenilpropanos y monoterpenos oxigenados) y que permite considerar los AEs en estudio como fuente potencial en el campo de la fitocosmética.

DOI: https://doi.org/10.15446/rfna.v69n2.59141

Antioxidant activity of two varieties of Ocimum basilicum L. for potential use in phytocosmetics

Actividad antioxidante de dos variedades de Ocimum basilicum L. para uso potencial en fitocosmética

 

Andrea Maritza Vivas Castaño1, Martha Cecilia Beltrán Cifuentes1 and Deisy Johanna Cañón Rincón1

 

1 Grupo de Investigación en Biotecnología y Biodiversidad BIBIO. COBILAN Fundación Universitaria del Área Andina Seccional Pereira. Calle 24 No. 8-55, Pereira, Colombia. <marthacb51@hotmail.com>

 

Received: April 7, 2016; Accepted: June 20, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


ABSTRACT
This investigation aimed to evaluate two varieties of Ocimum basilicum L., known as Basil, as potential raw material for the cosmetic industry, assessing their antioxidant properties, considering their industrial use in phytocosmetics. The antioxidant activity of essential oils (EOs) for the species Ocimum basilicum var. cinammom and var. album, were obtained by distillation steam using a Clevenger-type device. The antioxidant capacity was evaluated by the method of bleaching radical 1,1-diphenyl-2-picryl hydrazyl (DPPH) and the method of linoleic acid peroxidation (ferric thiocyanate). The EOs of the two species had significant antioxidant properties. The method of DPPH facilitated the evaluation of the antioxidant capacity versus the concentration of EOs, showing an efficient concentration at 10 ppm. On the other hand, the ferric thiocyanate method displayed an efficient inhibition up to 360 h (15 d). The obtained results demonstrated the antioxidant capacity of EOs in the investigation. The capacity was related to their chemical composition (phenylpropane and oxygenated monoterpenes). Therefore, EOs can be considered as a potential source in the field of phytocosmetics.

Key words: Antioxidant capacity, Ocimum basilicum L., var. cinammom, var. album, Volatile oils

RESUMEN
El presente estudio tuvo como finalidad valorar dos variedades de Ocimum basilicum L.; conocida con el nombre de Albahaca, como materia prima potencial para la industria cosmética, evaluando su propiedad antioxidante, con miras a un aprovechamiento industrial en fitocosmética. La actividad antioxidante de los aceites esenciales (AEs) de las especies Ocimum basilicum var. cinammom y var. album, se obtuvieron por destilación de arrastre de vapor tipo Clevenger. La capacidad antioxidante se evaluó por el método de la decoloración del radical 2,2-difenil-1-picril hidrazilo (DPPH) y el método de peroxidación del ácido linoleico (tiocianto férrico). Los AEs de las dos especies en estudio, presentan propiedades antioxidantes representativas. El método del DPPH permitió evaluar la capacidad antioxidante frente a la concentración de los AEs, demostrando una concentración eficiente a 10 ppm. Con el método del tiocianto férrico se encontró un máximo de inhibición eficiente a las 360 h (15 d). Los resultados obtenidos demuestran la capacidad antioxidante de los AEs en estudio, capacidad que está relacionada con la composición química (fenilpropanos y monoterpenos oxigenados) y que permite considerar los AEs en estudio como fuente potencial en el campo de la fitocosmética.

Palabras claves: Capacidad antioxidante, Ocimum basilicum L., var. cinammom, var. album, Aceites volátiles


 

The country of Colombia counts with a great biological diversity. Nevertheless, the richness and utility of the different species is at some point unknown. It is considered that there are about 250,000 vegetal species in the world, which around 80,000 of them can be found in Latin America. An approximate of 40,000 species are found in Colombia, Brazil and Peru (Forero, 1987). An approximate of 5,000 of these species have been used by indigenous communities and local farmers to treat the wide range of diseases and in facial, body and decoration activities. As a result, Colombia has a huge potential as a source for new active ingredients that can be used as a therapeutic and cosmetic alternative (Fonnegra and Jimenez, 2007).

In Risaralda, some of the most harvested species are certain varieties of basil (Ocimum basilicum L.) such as the O. basilicum L. var cinammom and the var album. The little information found in relation to the use of these species regards to traditional uses in order to stimulate the scalp which evolves in the growth of hair. This property is attributed mainly to the white basin Ocimun basilicum L (Atehortua, 1992; Chaves and Arango, 1998).

The cosmetics industry has been continuously seeking for phytoingredients as bioactive components. Fields such as the phytocosmetics apply ingredients taken from plants for the preparation of all types of cosmetics as a way to reduce the use of chemical substances in cosmetology. These natural raw materials are starting to be more implemented, especially when there is report of adverse reactions that are provoked by chemical substances used in cosmetology (Álvarez and Bague, 2012). The particular characteristics of the phytoingredients are given by the diverse metabolites of plants, and the pharmacological and ethnobotanical laboratories are the ones who weigh and analyze the different phytochemicals that are suitable for cosmetic usage. Some of the most used phytoingredients in the phytocosmetics are the essential oils (Ferraro et al., 2012).

The concentration of primary and secondary metabolites of the phytoingredients is not uniform in all the plant's cycle of life. It varies according to intrinsic and intrinsic factors such as geographical factors, weather, harvest time, the part of the plant that is being used, origin, and postharvest treatment among others (Ferraro et al., 2012).

In regard to the species of this investigation (Ocimum basilicum), it belongs to the Lamiaceae family. It is one of the most used families in the world as a source of spices and extracts with antibacterial and antioxidant properties (Hirose et al., 1986). The interest in the investigation of antioxidant activity of EOs species basil (O. basilicum) and extracts of different polarities has grown (Beltrán et al., 2010; Fernández et al., 2007). A preliminary investigation on the chemical composition, conducted to the same plant varieties that were collected in the same zone, found that EOs of O. basilicum L. var. cinammom and var. album, reported high content in phenylpropane and oxygenated monoterpenes. The var. cinammom presented as major components: Eucaliptol (24.06%) and eugenol (37.60%), and the var. album: methyl (E)-cinnamate (28.20%) and linalool (18.16%) (Beltrán et al., 2010).

The EOs which are rich in monoterpenes are called monoterpenoid EOs (eg, peppermint, basil, sage, etc.). The EOs which are rich in phenylpropane are called phenylpropanoid EOs (eg, cloves, cinnamon, anise, etc.) (Rojas et al., 2008; Mahecha, 2010). Different investigations have identified phenylpropane as compounds with significant biological activity. The high amount of methyl (E)-cinnamate, eugenol and linalool, are characterized by antimicrobial, antifungal, antiseptic and antioxidant activity (Reyes et al., 2007; Romero et al., 2004). Given the chemical complexity of AEs, antioxidant activity assay results can display dispersed results depending on the method used. Therefore, it is advisable an approach with multiple attempts (Granados et al., 2012).

Antioxidants are compounds which may inhibit or retard oxidation of other molecules, inhibiting the initiation and/or propagation of chain reactions of free radicals, preventing the formation of undesirable colors and flavors. This is why they are added to cosmetic products and food for human and animal consumption (Maestro and Borja, 1993; Murillo et al., 2007; Muñoz and Gutiérrez, 2009). Artificial antioxidants are widely used in industry. However, due to the carcinogenicity of these synthetic antioxidants, a growing interest on natural antioxidants has arose. These natural antioxidants can be found in plant products, since the presence of various chemical compounds gives them the property to act as anti-radical or antioxidant. This capacity has been demonstrated at a laboratory level and it is now widely researched and is a global trend in preference consumer (Muñoz and Gutiérrez, 2009; Granados et al., 2012; Rincón et al., 2011).

Natural products have shown the presence of phenolic compounds (tocopherols, flavonoids and phenolic acids), nitrogen compounds (alkaloids, chlorophyll derivatives, amino acids and amines) and carotenoids which have antioxidant properties. These features have favored its inclusion in cosmetic formulations (Muñoz and Gutiérrez, 2009; Rincón et al., 2011). In order to prevent the accumulation of free radicals, the body has different mechanisms of antioxidants defense produced endogenously. Nevertheless, as one ages and/or conditions of strong prooxidatives aggressions preveal, such as intense and repeated exposure to sun rays, these mechanisms start to be insufficient to protect the body. Based on this fact, it has been evidenced that organisms age because the cells accumulate the damage of free radicals in time, so that antioxidants are commonly used in skin care to prevent this aging (Rincón et al., 2011).

Natural antioxidants in the field of cosmetics are increasingly used for their ability to cancel or reduce these oxidative processes carried out uncontrollably into the skin tissue. The skin is the most exposed organ to the environment. It is especially vulnerable to damage caused by the free radicals. Whereby, it has a number of requirements for maintenance. If these needs are met satisfactorily, it will show a healthy skin. Whereas if this does not happen, its structure and metabolic activity can be compromised, causing a rough, prematurely aged and dull skin (Gajardo et al., 2011).

There are diverse antioxidants which are implemented in the treatment of problems caused by free radicals. They are capable of damaging the connective tissue, cell membranes and the DNA. The collagen is the most abundant fibrous protein of the connective tissue. It is responsible for the maintenance of texture and elasticity of the skin. The polyphenols are capable of reactivating the harmed collagen and of protecting it from the attack of free radicals and the enzymes (elastase, collagenase). They attach to the fibers of collagen and help to rebuild the connecting links that are damaged by the free radicals. As a result, there is an improvement in the skin flexibility. The tissues with mayor catchment (affinity) are the richer in glycosaminoglycans. This implies that there is activity at epidermal basal level. The damages produced in the skin by these unstable molecules are premature aging and cancer. In general, all the polyphenols have antioxidant capacity (Ferraro et al., 2012).

O. basilicum L. (basil), having the chemical composition polyphenols (phenylpropane) presents a high biological activity as a natural antioxidant that could be considered as ingredients in the field of phytocosmetics (Muñoz and Gutiérrez, 2009; Rincón et al., 2011). There are various methods to evaluate antioxidant activity, either in vitro or in vivo. One of the most implemented strategy in the in vitro measurement in the total antioxidant capacity of a compound, mixture or food; involves determining the antioxidant activity against chromogenic substances of radical nature. Color loss occurs in proportion to the concentration. However, the determinations of the antioxidant capacity in vitro only gives us a rough idea of what happens in complex situations in vivo (Madrigal et al., 2013 ).

 

MATERIALS AND METHODS

Plant material
Plant species were worked: O. basilicim var. cinammom and var. album, regionally known as cinnamon basil and white basil, respectively. These plants were obtained in La Florida, in the municipality of Pereira, Risaralda department (Colombia) at an altitude of 1440 m and average temperature of 27 °C. The plant species worked, were characterized taxonomically in previous investigations (Beltrán et al., 2010).

Treatment of plant material
Once the fresh plant material was collected, it was dried at a room temperature (25 °C) for 8 days. Some leaves and flowers that were considered healthy were selected and a reduction in size was performed by a hand mill in order to increase the contact surface (Lima, 2005). The content of moisture of the vegetal material was determined by the AOAC 934.91 method.

Distillation of EOs
The extraction of the EOs was done by steam distillation using a Clevenger-type device. The process was conducted with 100 g of plant material of grounded vegetal material and they were subjected to hydrodistillation with 500 mL of distilled water for 3 h. After obtaining the EOs, they were dried with anhydrous sodium sulfate and finally were stored in airtight containers protected from light and under refrigeration at 4 °C until use. The percent yield of extraction was calculated with the amount of EOs obtained (Murillo et al., 2004).

The EOs sensory characteristics (appearance (oily), color (bright light yellow) and odor (similar to the raw material)) were determined according to the NTC 3925, consisting of an assessment of the samples through the sensations perceived by the sense organs (ICONTEC, 1996).

Determination of antioxidant capacity
It was evaluated by two spectrophotometric methods, both procedures were performed in duplicate and all reagents were analytical grade.

DPPH method
The method was performed according to Cotelle et al. (1996). The free radical DPPH method reduces the radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) in 2,2-diphenyl-1-picryl-hydrazine by the antioxidant action of compounds containing -OH groups that discolor the reagent DPPH. The color changes from purple to yellow after reduction, can be quantified by the decrease in absorbance at 517 nm (Muñoz and Gutiérrez, 2009; Rincón et al., 2011; Delgado et al., 2010).

Ascorbic acid (vitamin C) was used as the reference standard (Carhuapoma et al., 2005). A solution standard of ascorbic acid 1000 ppm (100 mg in 100 mL ethanol) was prepared and dilutions of 50, 30, 20, 18, 16, 16, 14, 12, 10 and 8 ppm.

From the EOs of O. basilicum var. cinnamon and var. album, four dilutions in ethanol: 10, 20, 30 and 50 µL mL-1 were prepared.

DPPH solution was prepared at a concentration of 100 mM in ethanol, taking 3.9 mg of DPPH in 100 mL of solvent (Fernández et al., 2007; Delgado et al., 2010).

The neutralization reaction of the radical was carried out in test tubes. To each test tube, 250 µL of dilutions of ascorbic acid and EOs was added. Subsequently, 750 µL of the solution of DPPH radical (as white was used DPPH solution without sample) were added. The reaction was stirred at room temperature for 30 minutes. Finally, the absorbance was measured (Kuskoski et al., 2005; Delgado et al., 2010).

The antioxidant activity is expressed as percent inhibition, which corresponds to the amount of DPPH radical neutralized by the extract at a concentration determined according to the equation 1 (Muñoz and Gutiérrez, 2009):

Ferric thiocyanate method
Based on a linoleic acid peroxidation, using ammonium thiocyanate and ferrous chloride (Rincón et al., 2011).

A reference standard α-tocopherol (vitamin E) solution in ethanol of 1000 ppm was used (Murillo et al., 2007).

It were prepared simultaneous samples of α-tocopherol pattern diluted in ethanol to 10 ppm, samples of EO O. basilicum var. album and var. cinammom to 40 ppm and control samples (Murillo et al., 2007).

According the method adapted by Osawa and Namiki (1981), 1 mL sample pattern (10 ppm) and EOs (40 ppm) to a test tube cap screw were transferred individually, which were dissolved in 4 mL of ethanol 95%, then 4.1 mL of linoleic acid (2.51% v/v in ethanol 96%), 8 mL of 0.05 M phosphate buffer (pH 7.0) and 3.9 mL of distilled water were added. This solution was incubated at 40 °C temperature in the dark (Murillo et al., 2007; Huang et al., 2005; Solanilla et al., 2011).

From this solution, 0.1 mL was taken daily and 9.7 mL of ethanol (75% v/v) and 0.1 mL of ammonium thiocyanate (30% w/v) were added. To this reaction mixture 0.1 mL of ferrous chloride (20 mM) in hydrochloric acid (3.5% v/v) was added, and exactly 3 min later, the absorbance of the resulting mixture (Fe(SCN)3, red color) was read at 500 nm. The reading was repeated every 24 h for 30 d to evaluate the behavior over time (Huang et al., 2005).

The percentage of inhibition of peroxidation of linoleic acid was calculated according to the equation 2 (Huang et al., 2005; Solanilla et al., 2011).

 

RESULTS AND DISCUSSION

The worked ground plant material reported moisture content of 12.63 ± 0.34% for the var. cinamom and 13.31 ± 0.26% for the var. album. High moisture content can affect negativelythe extraction or alter the chemical quality of the oil, increasing acidity. A high acidity, according to the purity of the oil, indicates that there has been alteration causing changes in the aroma and flavor (Martínez, 2010; Zumbado, 2004).

The extraction yield was completed in triplicate by steam distillation Clevenger - type device, resulting in a percent yield of 0.324 ± 0.06% for var. cinamom and 0.158 ± 0.01% for var. album. The extraction yield percentages of EOs vary according to the plant, and are generally low values. Research indicates that basil contains EOs between 0.04 to 0.7%, and are responsible for its aroma and flavor (Díaz, 2010).

The organoleptic characteristics of EOs extracted from the var. cinammom and var. album displayed a bright light yellow and oily aspect and with a similar odor to the raw material. The vast majority of plant essences are colorless. Some have colorations modifiable by oxygen in the air. The observed modifications in color were caused by the action of light, which implies the presence of aliphatic compounds with little unsaturations or monoannular aromatics (Murillo et al., 2004).

The antioxidant activity of ascorbic acid at different concentrations in relation to the DPPH indicated that at higher doses, the concentration of the radical 2,2-diphenyl-1-picrylhydrazyl decreases, which is reduced and decolourised by the action of ascorbic acid. This reaction is recorded by the decrease in absorbance; therefore, a greater percentage of inhibition. The inhibition of ascorbic acid to 30 ppm was 96.8%, and almost complete inhibition. Consequently, the increase to 50 ppm was more stable, indicating a value of 97.3 ± 0.24% (Figure 1).

It was found that the higher the concentration of EOs of O. basilicum var. cinammom and var. album, the higher the inhibition activity, reflected by the increase of the inhibition percentage.

The EOs of O. basilicum var. cinammom presented a inhibition of 87.9% at a concentration of 10 ppm, an inhibition of 91.4% at 30 ppm and 92.1% up to 50 ppm. EOs of O. basilicum var. album obtained a 61.8% inhibition at 10 ppm and 90% inhibition at 30 ppm. Inhibition remained constant at 50 ppm.

The above data verify that by the DPPH method the antioxidant activity is dependent on the concentration of extract (Kuskoski et al., 2005). This behavior was shown by the ascorbic acid, indicating that a percentage of inhibition increased until a concentration of 30 ppm. It was also manifested by samples of the EOs, where the % inhibition increased to 30 ppm, and where the inhibition concentration began to stabilize.

The antioxidant activity when implementing the DPPH method, allowed us to observe that the EOs of O. basilicum var. cinammom presents greater % inhibition (87.8%) at lower concentration compared to the EO of var. album (61.5%). Although both EOs reached similar inhibitions at higher concentrations (30 and 50 ppm), the greatest potential inhibition at 10 ppm of EO var. cinammom indicates that lower concentration of EO is required to take free radicals; hence, it proves to be more efficient as antiradical (Rincón et al., 2011).

The antioxidant potential of EOs was complemented assessing their ability to inhibit the oxidation of linoleic acid. In this case, the same concentration of α-tocopherol (10 ppm) and EOs (40 ppm) was used, evaluating their behavior over time. It was assessed for a total of 720 h (30 d).

Through this method, EOs of O. basilicum var. cinammom and var. album inhibited the linoleic acid peroxidation between 48.2 and 90.3% for the case of var. cinammom and between 38.1 and 84.4% for var. album. This showed, in both cases, the maximum potential at 360 h (15 d).

The α-tocopherol pattern showed a minimum percentage of inhibition of 55.4% (48 h) and peaked at 84.6% to 360 h (15 d), as well as the worked EOs. The through the ferric thiocyanate method was of +/- 0.8. Figure 2 displays the results of the pattern of inhibition and the EOs.

There was a similar behavior of α-tocopherol and EOs, for both cases, a maximum inhibition percentage at 360 h (15 d) was obtained. This similarity in the inhibitory power of the samples with α-tocopherol could be apparent if one takes into account the difference in concentrations between EOs (40 ppm) and standard (10 ppm). However, the varieties of O. basilicum showed the ability to prevent formation of peroxides as a result of deterioration of linoleic acid. Despite the degree of dilution worked, their potential was significant, even at 48 h (2 d), which reached a inhibition of about 40% (Murillo et al., 2007).

The s of the results of moisture and extraction yield obtained for the plant material and of antioxidant capacity by DPPH and ferric thiocyanate methods are low (≤0.1), indicating that the methods used and the results obtained are repeatable and dependable (Sánchez and Santa, 2009).

The results of the two methods are comparable for the determination of the antioxidant activity, because in both cases the EOs var. cinammom revealed a higher potential activity compared to the var. album. Nevertheless, the antioxidant activity of var. album is representative (Rincón et al., 2011).

Prior investigation suggest that an efficient antioxidant activity is mainly due to the presence of phenolic compounds (Rincón et al., 2011; Kuskoski et al., 2005; Juliani and Simon, 2002; Quiroga, 2013). This would support the high antioxidant activity of EOs worked; considering that in a previous investigation where the plant material was collected in the same location, it was found that var. cinammom worked contains eugenol (37.60%) and eucalyptol (24.06%) as major components, and var. album contains methyl (E)-cinnamate (28.20%) and linalool (18.16%), in which the eugenol and methyl (E)-cinnamate belongs to the group of the phenylpropanes, and the eucalyptol and linalool to the group of oxygenated monoterpenes, chemical compounds that are directly related to the antioxidant capacity of worked O. basilicum varieties (Beltrán et al., 2010).

In a research conducted by Ramírez et al. (2013) the species Ocimum basilicum L., showed as major components phenylpropane (eugenol) and oxygenated monoterpenes (linalool and eucalyptol), demonstrating that the highest influence in the behavior of the antioxidant activity is the content of eugenol; therefore, when there is a higher content of eugenol, there is a better antioxidant activity (Juliani and Simon, 2002; Ramírez et al., 2013; Wang et al., 2010). This statement makes sense if it is consider that the var. cinammon has a 37.60% of eugenol, while the var. album worked this compound was not present, and evidently by both methods var. cinammon had a higher activity inhibition.

Mahecha (2010) indicated that in general, the antioxidant capacity is proportional to the presence of phenylpropanoid derivatives, phenols or proton donor substances in the composition of the OEs . This is why the two EOs from the plant material studied presented efficient inhibition.

On the other hand, it is well known that the high antioxidant activity of the phenolic monoterpenes behavior can also be related to the antioxidant potential of EOs of Ocimum basilicum L. worked (Quiroga, 2013).

These chemicals compounds are part of the main source of natural antioxidants from fruits and vegetables, which are generally phenolic compounds in abundance. These compounds are closely associated with the color and flavor of plant origin, as well as its nutritional quality for its antioxidant properties. In several investigations, researchers have evaluated the antioxidant capacity of plant species, concluding that polyphenolic compounds are primarily responsible for the antioxidant activity "in vitro" (Rodas et al., 2010).

These antioxidant compounds are able to inhibit oxidation and that is why they can be added to pharmaceutical or cosmetic products that are continuously exposed to deterioration by oxidative processes such as rancidity in oils and fats. They are also significant components foranti-aging preparations (Genaro, 2003; Rodas et al., 2010).

The antioxidant capacity reflected by phenylpropane and oxygenated monoterpenes present in EOs of var. cinammon and var. album, can be considered as natural antioxidant compounds that could be used as additives in cosmetic products and thus reduces the use of synthetic antioxidants (Rincón et al., 2011; Quiroga, 2013).

There are certain requirements to be met by antioxidants when being implemented in cosmetics. Some worth to be mentioned are that the concentrations used should not be irritating or allergenic, must not cause discoloration or odor in the preparation and should be sufficiently liposoluble to develop its effect. Besides the antioxidant must be stable and effective over a wide pH range, and be soluble in its oxidized form, and their products reaction should be colorless and odorless. Other essential and obvious requirements are that they should not be toxic; they must be stable and compatible with the product ingredients and composition of packaging (Genaro, 2003; Rodas et al., 2010).

Aromatic and medicinal plants are an excellent alternative to be use in the cosmetics industry because of their antioxidants properties. Therefore, they provide an opportunity to explore their potential in different growing zones, strengthening the productive chain and the cosmetic industry, a sector considered world class, given the possibility of natural raw materials in the manufacture of cosmetics (Ferraro and Martino, 2012).

Parameters such as geographical, climate, time of harvest, part of the plant used, origin, post-harvest treatment, etc. are important to take into account in order to optimize the concentration of primary and secondary metabolites of phytoingredients (Ferraro and Martino, 2012).

 

CONCLUSIONS

The EOs of O. basilicum L. var. cinammom and var. album showed significant antioxidant properties by the two spectrophotometric methods (DPPH and ferric thiocyanate). The DDPH method demonstrated the upward antioxidant potential according to the concentration, being a significant inhibitory power at 10 ppm of EOs.

The ferric thiocyanate method confirmed the antioxidant activity of EOs, worked at 40 ppm. It showed a maximum inhibition at 360 h (15 d), this inhibition potential is substantial compared to the reference standard (α-tocopherol) that we worked at lower concentration (10 ppm).

The effectiveness of the antioxidant activity to the essential oils is related with composition phenylpropane and oxygenated monoterpenes, which were previously studied. These chemicals compounds have been attributed the antioxidant behavior present in various varieties of O. basilicum. This anti-radical action may result as an excellent raw material for the production of natural antioxidants and be utilized in cosmetic formulations in order to prevent oxidative processes or as an active ingredient in anti-aging.

 

ACKNOWLEDGEMENTS

This research was conducted with the support of the Research Center, the Laboratorio de Control de Calidad y Biotecnología COBILAN and the Faculty of Health Sciences of the Fundación Universitaria del Área Andina- Seccional Pereira.

 

REFERENCES

Álvarez N and Bague A. 2012. Fitocosméticos. Primera edición. AMV Ediciones, Madrid, España. 330 p.

Atehortua L. 1992. Banco de Germoplasma de Plantas Medicinales una prioridad nacional. In: Memorias I Symposium on Medicinal Plants. Universidad Javeriana. Santafé de Bogotá.

Beltrán M, Peláez E, Estrada J, Escobar J, Serna L and Ríos D. 2010. Estudio farmacognósico para el cuidado de la salud a partir de aceites esenciales obtenidos por destilación de arrastre de vapor. Investigaciones Andina 12(20): 8-18.

Carhuapoma M, Bonilla P, Suárez S, Vila R and López S. 2005. Estudio de la composición química y actividad antioxidante del aceite esencial de Luma chequen (Molina) A. Gray "arrayán". Ciencia e Investigación 8(2): 73-79.

Chaves M, Arango N. 1998. Informe nacional sobre el estado de la biodiversidad 1997-Colombia. Tomo III. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia. 133 p.

Cotelle N, Bernier J, Catteau J, Pommery J, Wallet J and Gaydou E. 1996. Antioxidant properties of hydroxy-flavones. Free Radical Biology and Medicine 20(1): 35-43. doi: 10.1016/0891-5849(95)02014-4

Delgado Y, Báez J, Núñez M, García C, Amaya C and Pimentel D. 2010. Determinación de la actividad antioxidante del aceite esencial de orégano (Poliomitha longiflora Gray). pp. 1-7. In: Memorias XII National Congress of Food Technology. Universidad de Guanajuato. Guanajuato, México.

Díaz P. 2010. Efecto del tiempo de secado y de la variedad en las características físico-químicas de la albahaca (Ocimun basilicum) seca. Tesis en Ingeniería y Tecnología de Alimentos. Universidad Zamorano. Honduras. 18 p.

Fernández K, Viña A, Murillo E and Méndez J. 2007. Actividad antioxidante y antimicrobial de los volátiles de cuatro variedades de albahacas cultivadas en el departamento del Tolima. Scientia et Technica Año XIII (33): 401-403.

Ferraro G, Martino V, Bnadoni A and Nadinic J. 2012. Fitocosmética. Fitoingredientes y otros productos naturales. Primera edición. Editorial Eudeba, Buenos Aires, Argentina. 272 p.

Fonnegra R and Jiménez, S. 2007. Plantas medicinales aprobadas en Colombia. Second edition. Editorial Universidad de Antioquia, Medellín, Colombia. 368 p.

Forero N. 1987. La taxonomía, el herbario y la investigación etnobotánica. p. 251-255. In: Memorias I Colombian Symposium on Ethnobotany. Santa Marta, Colombia.

Gajardo S, Benites J, López J, Burgos N, Caro C and Rojas M. 2011. Astaxantina: antioxidante de origen natural con variadas aplicaciones en cosmética. Biofarbo 19(2): 6-12.

Genaro A. 2003. Remington: Farmacia. Volumen 1. Editorial Médica Panamericana, Argentina. 1388 p.

Granados C, Yáñez X and Santafé G. 2012. Evaluación de la actividad antioxidante del aceite esencial foliar de Calycolpus moritzianus y Minthostachys mollis de Norte de Santander. Bistua: Revista de la Facultad de Ciencias Básicas 10(1): 12-23.

Hirose M, Hagiwara A, Masui T, Inoue K and Ito N. 1986. Combined effects of butylated hydroxyanisole and other antioxidants in induction of forestomach lesions in rats. Cancer Letters 30(2): 169-174. doi: 10.1016/0304-3835(86)90085-6

Huang D, Chen H, Lin C and Lin Y. 2005. Antioxidant and antiproliferative activities of water spinach (Ipomoea aquatica Forsk) constituents. Botanical Bulletin of Academia Sinica 46(2): 99-106.

ICONTEC. 1996. NTC 3925. Análisis sensorial. Metodología. Guía general. Instituto Colombiano de Normas Técnicas y Certificación, Santa Fe de Bogotá. 25p.

Juliani H and Simon J. 2002. Antioxidant Activity of Basil. pp. 575-579. In: Janick J, Whipey A. (eds.). Trends in new crops and new uses. First edition. ASHS Press, Alexandria. 599 p.

Kuskoski E, Asuero A, Troncoso A, Mancini-Filho J and Fett R. 2005. Aplicación de diversos métodos químicos para determinar actividad antioxidante en pulpa de frutos. Food Science and Technology (Campinas) 25(4): 726-732. doi: 10.1590/S0101-20612005000400016

Lima S. 2005. Análisis de los rendimientos obtenidos de dos especies de eucalipto trabajados en seco a nivel laboratorio y a nivel planta piloto en la extracción de su aceite esencial. Thesis in Chemical Engineering. Faculty of Engineering. Universidad de San Carlos de Guatemala. Guatemala. 76 p.

Madrigal E, García F, Morales J, Vászquez P, Muñoz S, Zuñiga C, Sumaya M, Madrigal E and Hernández A. (2013). Antioxidant and anticlastogenic capacity of prickly pear juice. Nutrients. 5(10): 4145-4158. doi: 10.3390/nu5104145

Maestro R and Borja R. 1993. Actividad antioxidante de los compuestos fenólicos. Grasas y Aceites 44(2): 101-106. doi: 10.3989/gya.1993.v44.i2.1105

Mahecha C. 2010. Actividad antioxidante y antibacteriana de aceites esenciales extraidos de hojas y frutos de Siparuna sessiliflora. Tesis de Maestría en Ciencias Biológicas. Departamento de Química. Facultad de Ciencias. Pontificia Universidad Javeriana. Santa Fe de Bogotá. 115 p.

Martínez A. 2003. Aceites esenciales. Facultad de Química Farmacéutica. Universidad de Antioquia, Medellín. 34 p.

Martínez M. 2010. Extracción y caracterización de aceite de nuez (Juglans regia L.): influencia del cultivar y de factores tecnológicos sobre su composición y estabilidad oxidativa. Tesis Doctoral en Ciencias de la Ingeniería. Facultad de Ciencias Exactas, Físicas y Naturales. Universidad Nacional de Córdoba. Cordoba, Argentina. 141 p.

Muñoz M and Gutiérrez D. 2009. Determinación de actividad antioxidante de diversas partes del árbol Nicotiana glauca. Facultad de Química. Universidad Autónoma de Queretaro. Citado por : Alejandro M, Jaramillo X, Ojeda S, Malagón O and Ramírez J. 2013. Actividad antioxidante y antihiperglucemiante de la especie medicinal Oreocallis grandiflora (Lam.) R. Br., al sur del Ecuador. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 12 (1): 59 - 68.

Murillo E, Fernández K, Sierra D, Viña A. 2004. Caracterización fisicoquímica del aceite esencial de albahaca. II. Revista Colombiana de Química 33(2):139-48. ISSN: 2357-3791

Murillo E, Fernández K, Viña A and Méndez J. 2007. Actividad antioxidante in vitro y antimicrobial de extractos metanólicos de cuatro albahacas cultivadas en Ibagué. Journal Tumbaga (2): 72-84.

Osawa T and Namiki M. 1981. A novel type of antioxidant isolated from leaf wax of eucalyptus leaves. Agricultural and Biological Chemistry 45(3): 735-739.

Quiroga P. 2013. Evaluación de aceites esenciales y monoterpenos como agentes conservantes de las propiedades químicas y sensoriales de los alimentos. Tesis Doctoral en Ciencias Agropecuarias. Facultad de Ciencias Agropecuarias. Universidad Nacional de Córdoba. Córdoba, Argentina. 184 p.

Ramírez R, Angulo A, Olivero J and Santafé G. 2013. Relación entre la composición química y la actividad antioxidante del aceite esencial de Ocimum basilicum L. cultivado bajo diferentes tratamientos de fertilizante. Revista Cubana de Plantas Medicinales 18(1): 47-56.

Reyes J, Patiño J and Stashenko E. 2007. Caracterización de los metabolitos secundarios de dos especies de Ocimum (Labiatae), en función del método de extracción. Scientia et Technica Año XIII (33): 121-123.

Rincón A, Pérez M, Bou L, Romero A, Bucarito L and Padilla F. 2011. Métodos para la determinación de la actividad antioxidante de vegetales. Revista Facultad de Farmacia 74(1): 24-28.

Rojas D, Narvaéz E and Restrepo L. 2008. Evaluación del contenido de vitamina C, fenoles totales y actividad antioxidante en pulpa de guayaba (Psidium guajava L.) de las variedades pera, regional roja y regional blanca. p. 49-60. In: Memorias Red-Alfa Lagrotech. Comunidad Europea. Cartagena.

Rodas E, López K and Tul Y. 2010. Evaluación de la actividad antioxidante de extractos frutales como alternativa a los antioxidantes sintéticos en preparaciones cosméticas tipo emulsión. Seminario de Investigación en Química Farmacéutica. Facultad de Ciencias Químicas y Farmacia. Universidad de San Carlos de Guatemala. Guatemala. 86 p.

Romero C, Belisario Y and Blasco M. 2004. Extracción del aceite esencial de albahaca (Ocimum basilicum L.) con CO2 supercrítico. Ciencia Scientific Journal from the Experimental Faculty of Sciences, Universidad del Zulia 12(4): 309-314.

Sánchez V, Santa J. 2009. Estudio de las antraquinonas presentes en extractos de mucílagos y hojas de Aloe vera de plantas cultivadas en la región cafetera. Tesis en Tecnología Química. Facultad de Tecnología. Universidad Tecnológica de Pereira. Pereira, Colombia. 60 p.

Solanilla J, Lombo O, Murillo E and Méndez J. 2011. Valoración del potencial antioxidante de Mollinedia racemosa (romadizo). Revista Cubana de Plantas Medicinales 16(2): 151-163.

Wang H, Yih K and Huang K. 2010. Comparative study of the antioxidant activity of forty-five commonly used essential oils and their potential active components. Journal of Food and Drug Analysis 18(1): 24-33.

Zumbado H. 2004. Análisis químico de los alimentos: métodos clásicos. Primera edtición. Editorial Universitaria, La Habana. 433 p.

References

Álvarez N and Bague A. 2012. Fitocosméticos. Primera edición. AMV Ediciones, Madrid, España. 330 p.

Atehortua L. 1992. Banco de Germoplasma de Plantas Medicinales una prioridad nacional. In: Memorias I Symposium on Medicinal Plants. Universidad Javeriana. Santafé de Bogotá

Beltrán M, Peláez E, Estrada J, Escobar J, Serna L and Ríos D. 2010. Estudio farmacognósico para el cuidado de la salud a partir de aceites esenciales obtenidos por destilación de arrastre de vapor. Investigaciones Andina 12(20): 8-18.

Carhuapoma M, Bonilla P, Suárez S, Vila R and López S. 2005. Estudio de la composición química y actividad antioxidante del aceite esencial de Luma chequen (Molina) A. Gray "arrayán". Ciencia e Investigación 8(2): 73-79.

Chaves M, Arango N. 1998. Informe nacional sobre el estado de la biodiversidad 1997-Colombia. Tomo III. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia. 133 p.

Cotelle N, Bernier J, Catteau J, Pommery J, Wallet J and Gaydou E. 1996. Antioxidant properties of hydroxy-flavones. Free Radical Biology and Medicine 20(1): 35-43. doi: 10.1016/0891-5849(95)02014-4

Delgado Y, Báez J, Núñez M, García C, Amaya C and Pimentel D. 2010. Determinación de la actividad antioxidante del aceite esencial de orégano (Poliomitha longiflora Gray). pp. 1-7. In: Memorias XII National Congress of Food Technology. Universidad de Guanajuato. Guanajuato, México.

Díaz P. 2010. Efecto del tiempo de secado y de la variedad en las características físico-químicas de la albahaca (Ocimun basilicum) seca. Tesis en Ingeniería y Tecnología de Alimentos. Universidad Zamorano. Honduras. 18 p.

Fernández K, Viña A, Murillo E and Méndez J. 2007. Actividad antioxidante y antimicrobial de los volátiles de cuatro variedades de albahacas cultivadas en el departamento del Tolima. Scientia et Technica Año XIII (33): 401-403.

Ferraro G, Martino V, Bnadoni A and Nadinic J. 2012. Fitocosmética. Fitoingredientes y otros productos naturales. Primera edición. Editorial Eudeba, Buenos Aires, Argentina. 272 p.

Fonnegra R and Jiménez, S. 2007. Plantas medicinales aprobadas en Colombia. Second edition. Editorial Universidad de Antioquia, Medellín, Colombia. 368 p.

Forero N. 1987. La taxonomía, el herbario y la investigación etnobotánica. p. 251-255. In: Memorias I Colombian Symposium on Ethnobotany. Santa Marta, Colombia.

Gajardo S, Benites J, López J, Burgos N, Caro C and Rojas M. 2011. Astaxantina: antioxidante de origen natural con variadas aplicaciones en cosmética. Biofarbo 19(2): 6-12.

Genaro A. 2003. Remington: Farmacia. Volumen 1. Editorial Médica Panamericana, Argentina. 1388 p.

Granados C, Yáñez X and Santafé G. 2012. Evaluación de la actividad antioxidante del aceite esencial foliar de Calycolpus moritzianus y Minthostachys mollis de Norte de Santander. Bistua: Revista de la Facultad de Ciencias Básicas 10(1): 12-23.

Hirose M, Hagiwara A, Masui T, Inoue K and Ito N. 1986. Combined effects of butylated hydroxyanisole and other antioxidants in induction of forestomach lesions in rats. Cancer Letters 30(2): 169-174. doi: 10.1016/0304-3835(86)90085-6

Huang D, Chen H, Lin C and Lin Y. 2005. Antioxidant and antiproliferative activities of water spinach (Ipomoea aquatica Forsk) constituents. Botanical Bulletin of Academia Sinica 46(2): 99-106.

ICONTEC. 1996. NTC 3925. Análisis sensorial. Metodología. Guía general. Instituto Colombiano de Normas Técnicas y Certificación, Santa Fe de Bogotá. 25p.

Juliani H and Simon J. 2002. Antioxidant Activity of Basil. pp. 575-579. In: Janick J, Whipey A. (eds.). Trends in new crops and new uses. First edition. ASHS Press, Alexandria. 599 p.

Kuskoski E, Asuero A, Troncoso A, Mancini-Filho J and Fett R. 2005. Aplicación de diversos métodos químicos para determinar actividad antioxidante en pulpa de frutos. Food Science and Technology (Campinas) 25(4): 726-732. doi: 10.1590/S0101-20612005000400016

Lima S. 2005. Análisis de los rendimientos obtenidos de dos especies de eucalipto trabajados en seco a nivel laboratorio y a nivel planta piloto en la extracción de su aceite esencial. Thesis in Chemical Engineering. Faculty of Engineering. Universidad de San Carlos de Guatemala. Guatemala. 76 p.

Madrigal E, García F, Morales J, Vászquez P, Muñoz S, Zuñiga C, Sumaya M, Madrigal E and Hernández A. (2013). Antioxidant and anticlastogenic capacity of prickly pear juice. Nutrients. 5(10): 4145-4158. doi: 10.3390/nu5104145

Maestro R and Borja R. 1993. Actividad antioxidante de los compuestos fenólicos. Grasas y Aceites 44(2): 101-106. doi: 10.3989/gya.1993.v44.i2.1105

Mahecha C. 2010. Actividad antioxidante y antibacteriana de aceites esenciales extraidos de hojas y frutos de Siparuna sessiliflora. Tesis de Maestría en Ciencias Biológicas. Departamento de Química. Facultad de Ciencias. Pontificia Universidad Javeriana. Santa Fe de Bogotá. 115 p.

Martínez A. 2003. Aceites esenciales. Facultad de Química Farmacéutica. Universidad de Antioquia, Medellín. 34 p.

Martínez M. 2010. Extracción y caracterización de aceite de nuez (Juglans regia L.): influencia del cultivar y de factores tecnológicos sobre su composición y estabilidad oxidativa. Tesis Doctoral en Ciencias de la Ingeniería. Facultad de Ciencias Exactas, Físicas y Naturales. Universidad Nacional de Córdoba. Cordoba, Argentina. 141 p.

Muñoz M and Gutiérrez D. 2009. Determinación de actividad antioxidante de diversas partes del árbol Nicotiana glauca. Facultad de Química. Universidad Autónoma de Queretaro. Citado por : Alejandro M, Jaramillo X, Ojeda S, Malagón O and Ramírez J. 2013. Actividad antioxidante y antihiperglucemiante de la especie medicinal Oreocallis grandiflora (Lam.) R. Br., al sur del Ecuador. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 12 (1): 59 - 68.

Murillo E, Fernández K, Sierra D, Viña A. 2004. Caracterización fisicoquímica del aceite esencial de albahaca. II. Revista Colombiana de Química 33(2):139-48. ISSN: 2357-3791

Murillo E, Fernández K, Viña A and Méndez J. 2007. Actividad antioxidante in vitro y antimicrobial de extractos metanólicos de cuatro albahacas cultivadas en Ibagué. Journal Tumbaga (2): 72-84.

Osawa T and Namiki M. 1981. A novel type of antioxidant isolated from leaf wax of eucalyptus leaves. Agricultural and Biological Chemistry 45(3): 735-739.

Quiroga P. 2013. Evaluación de aceites esenciales y monoterpenos como agentes conservantes de las propiedades químicas y sensoriales de los alimentos. Tesis Doctoral en Ciencias Agropecuarias. Facultad de Ciencias Agropecuarias. Universidad Nacional de Córdoba. Córdoba, Argentina. 184 p.

Ramírez R, Angulo A, Olivero J and Santafé G. 2013. Relación entre la composición química y la actividad antioxidante del aceite esencial de Ocimum basilicum L. cultivado bajo diferentes tratamientos de fertilizante. Revista Cubana de Plantas Medicinales 18(1): 47-56.

Reyes J, Patiño J and Stashenko E. 2007. Caracterización de los metabolitos secundarios de dos especies de Ocimum (Labiatae), en función del método de extracción. Scientia et Technica Año XIII (33): 121-123.

Rincón A, Pérez M, Bou L, Romero A, Bucarito L and Padilla F. 2011. Métodos para la determinación de la actividad antioxidante de vegetales. Revista Facultad de Farmacia 74(1): 24-28.

Rojas D, Narvaéz E and Restrepo L. 2008. Evaluación del contenido de vitamina C, fenoles totales y actividad antioxidante en pulpa de guayaba (Psidium guajava L.) de las variedades pera, regional roja y regional blanca. p. 49-60. In: Memorias Red-Alfa Lagrotech. Comunidad Europea. Cartagena.

Rodas E, López K and Tul Y. 2010. Evaluación de la actividad antioxidante de extractos frutales como alternativa a los antioxidantes sintéticos en preparaciones cosméticas tipo emulsión. Seminario de Investigación en Química Farmacéutica. Facultad de Ciencias Químicas y Farmacia. Universidad de San Carlos de Guatemala. Guatemala. 86 p.

Romero C, Belisario Y and Blasco M. 2004. Extracción del aceite esencial de albahaca (Ocimum basilicum L.) con CO2 supercrítico. Ciencia Scientific Journal from the Experimental Faculty of Sciences, Universidad del Zulia 12(4): 309-314.

Sánchez V, Santa J. 2009. Estudio de las antraquinonas presentes en extractos de mucílagos y hojas de Aloe vera de plantas cultivadas en la región cafetera. Tesis en Tecnología Química. Facultad de Tecnología. Universidad Tecnológica de Pereira. Pereira, Colombia. 60 p.

Solanilla J, Lombo O, Murillo E and Méndez J. 2011. Valoración del potencial antioxidante de Mollinedia racemosa (romadizo). Revista Cubana de Plantas Medicinales 16(2): 151-163.

Wang H, Yih K and Huang K. 2010. Comparative study of the antioxidant activity of forty-five commonly used essential oils and their potential active components. Journal of Food and Drug Analysis 18(1): 24-33.

Zumbado H. 2004. Análisis químico de los alimentos: métodos clásicos. Primera edtición. Editorial Universitaria, La Habana. 433 p.

How to Cite

APA

Vivas Castaño, A. M., Beltrán Cifuentes, M. C. and Cañón Rincón, D. J. (2016). Antioxidant activity of two varieties of Ocimum basilicum L. for potential use in phytocosmetics. Revista Facultad Nacional de Agronomía Medellín, 69(2), 7965–7973. https://doi.org/10.15446/rfna.v69n2.59141

ACM

[1]
Vivas Castaño, A.M., Beltrán Cifuentes, M.C. and Cañón Rincón, D.J. 2016. Antioxidant activity of two varieties of Ocimum basilicum L. for potential use in phytocosmetics. Revista Facultad Nacional de Agronomía Medellín. 69, 2 (Jul. 2016), 7965–7973. DOI:https://doi.org/10.15446/rfna.v69n2.59141.

ACS

(1)
Vivas Castaño, A. M.; Beltrán Cifuentes, M. C.; Cañón Rincón, D. J. Antioxidant activity of two varieties of Ocimum basilicum L. for potential use in phytocosmetics. Rev. Fac. Nac. Agron. Medellín 2016, 69, 7965-7973.

ABNT

VIVAS CASTAÑO, A. M.; BELTRÁN CIFUENTES, M. C.; CAÑÓN RINCÓN, D. J. Antioxidant activity of two varieties of Ocimum basilicum L. for potential use in phytocosmetics. Revista Facultad Nacional de Agronomía Medellín, [S. l.], v. 69, n. 2, p. 7965–7973, 2016. DOI: 10.15446/rfna.v69n2.59141. Disponível em: https://revistas.unal.edu.co/index.php/refame/article/view/59141. Acesso em: 29 mar. 2024.

Chicago

Vivas Castaño, Andrea Maritza, Martha Cecilia Beltrán Cifuentes, and Deisy Johanna Cañón Rincón. 2016. “Antioxidant activity of two varieties of Ocimum basilicum L. for potential use in phytocosmetics”. Revista Facultad Nacional De Agronomía Medellín 69 (2):7965-73. https://doi.org/10.15446/rfna.v69n2.59141.

Harvard

Vivas Castaño, A. M., Beltrán Cifuentes, M. C. and Cañón Rincón, D. J. (2016) “Antioxidant activity of two varieties of Ocimum basilicum L. for potential use in phytocosmetics”, Revista Facultad Nacional de Agronomía Medellín, 69(2), pp. 7965–7973. doi: 10.15446/rfna.v69n2.59141.

IEEE

[1]
A. M. Vivas Castaño, M. C. Beltrán Cifuentes, and D. J. Cañón Rincón, “Antioxidant activity of two varieties of Ocimum basilicum L. for potential use in phytocosmetics”, Rev. Fac. Nac. Agron. Medellín, vol. 69, no. 2, pp. 7965–7973, Jul. 2016.

MLA

Vivas Castaño, A. M., M. C. Beltrán Cifuentes, and D. J. Cañón Rincón. “Antioxidant activity of two varieties of Ocimum basilicum L. for potential use in phytocosmetics”. Revista Facultad Nacional de Agronomía Medellín, vol. 69, no. 2, July 2016, pp. 7965-73, doi:10.15446/rfna.v69n2.59141.

Turabian

Vivas Castaño, Andrea Maritza, Martha Cecilia Beltrán Cifuentes, and Deisy Johanna Cañón Rincón. “Antioxidant activity of two varieties of Ocimum basilicum L. for potential use in phytocosmetics”. Revista Facultad Nacional de Agronomía Medellín 69, no. 2 (July 1, 2016): 7965–7973. Accessed March 29, 2024. https://revistas.unal.edu.co/index.php/refame/article/view/59141.

Vancouver

1.
Vivas Castaño AM, Beltrán Cifuentes MC, Cañón Rincón DJ. Antioxidant activity of two varieties of Ocimum basilicum L. for potential use in phytocosmetics. Rev. Fac. Nac. Agron. Medellín [Internet]. 2016 Jul. 1 [cited 2024 Mar. 29];69(2):7965-73. Available from: https://revistas.unal.edu.co/index.php/refame/article/view/59141

Download Citation

CrossRef Cited-by

CrossRef citations6

1. Miroslava Kačániová, Lucia Galovičová, Petra Borotová, Nenad L. Vukovic, Milena Vukic, Simona Kunová, Pavel Hanus, Ladislav Bakay, Edyta Zagrobelna, Maciej Kluz, Przemysław Łukasz Kowalczewski. (2022). Assessment of Ocimum basilicum Essential Oil Anti-Insect Activity and Antimicrobial Protection in Fruit and Vegetable Quality. Plants, 11(8), p.1030. https://doi.org/10.3390/plants11081030.

2. Vanessa Ferreira Caldeira, Ana Flávia Freitas de Carvalho, José Marcos Teixeira de Alencar Filho, Amanda Leite Guimarães, Silvio Alan Gonçalves Bomfim Reis, Edigênia Cavalcante da Cruz Araújo. (2023). Chemistry and fatty acid profile of new fixed oils from two Cenostigma species: Different promising raw material for use in cosmetic emulsions. Industrial Crops and Products, 196, p.116451. https://doi.org/10.1016/j.indcrop.2023.116451.

3. Atif B.A. Mohammed, Sakina Yagi, Tzvetomira Tzanova, Hervé Schohn, Haider Abdelgadir, Azzurra Stefanucci, Adriano Mollica, Mohamad Fawzi Mahomoodally, Talal A. Adlan, Gökhan Zengin. (2020). Chemical profile, antiproliferative, antioxidant and enzyme inhibition activities of Ocimum basilicum L. and Pulicaria undulata (L.) C.A. Mey. grown in Sudan. South African Journal of Botany, 132, p.403. https://doi.org/10.1016/j.sajb.2020.06.006.

4. Alexander Mehring, Janik Haffelder, Jonas Chodorski, Judith Stiefelmaier, Dorina Strieth, Roland Ulber. (2020). Establishment and triterpenoid production of Ocimum basilicum cambial meristematic cells. Plant Cell, Tissue and Organ Culture (PCTOC), 143(3), p.573. https://doi.org/10.1007/s11240-020-01942-y.

5. Alin Faur, Claudia Watz, Elena-Alina Moacă, Ştefana Avram, Florin Borcan, Iulia Pinzaru, Andrada Iftode, Mirela Nicolov, Ramona Amina Popovici, Marius Raica, Camelia A. Szuhanek, Cristina Dehelean. (2020). Correlations on Phenolic Screening Related to In Vitro and In Ovo Assessment of Ocimum basilicum L. Hydro-Alcoholic Extracts Used as Skin Active Ingredient. Molecules, 25(22), p.5442. https://doi.org/10.3390/molecules25225442.

6. Zeynep DUMANOĞLU, Sam MOKHTARZADEH. (2021). Farklı fesleğen (Ocimum basilicum L.) populasyonlarına ait tohumların bazı karakteristik özelliklerinin belirlenmesi üzerine bir araştırma. Akademik Ziraat Dergisi, 10(1), p.97. https://doi.org/10.29278/azd.799932.

Dimensions

PlumX

Article abstract page views

460

Downloads

Download data is not yet available.