Published

2016-01-01

Precipitation effects on soil characteristics in tropical rain forests of the Chocó biogeographical region

Efectos de la precipitación sobre las características del suelo en bosques lluviosos tropicales de la región del Chocó biogeográfico

DOI:

https://doi.org/10.15446/rfna.v69n1.54749

Keywords:

lixiviation, nutrient limitation, tropical rainforest, Ultisol (en)
Lixiviación, Limitación de nutrientes, Bosques tropicales, Ultisoles (es)

Downloads

Authors

  • Harley Quinto Mosquera Universidad Tecnológica del Chocó Diego Luis Córdoba
  • Flavio Moreno Hurtado Universidad Nacional de Colombia
Average annual precipitation (AAP) is one of the principal environmental factors that regulates processes in terrestrial ecosystems. The effect of AAP on the availability of edaphic nutrients is poorly understood, especially in tropical zones with high rainfall. In order to evaluate the effects of high AAP on the availability of soil N, P, and K, physicochemical parameters were measured in soils of three tropical rainforests in the Chocó biogeographical region with different AAPs (7,500, 8,000, and 10,000 mm yr-1). Furthermore, a bibliographical review was carried out that including studies for distinct tropical Ultisols and AAP ranging from 1,800 to 10,000 mm yr-1. The evaluated soils presented extreme acidity with high contents of Al, organic matter (OM) and total N, and low quantities of P, Mg, and Ca. The K concentrations were intermediate and the effective cation exchange capacity (ECEC) was low. On the other hand, in the evaluation of the influence of the AAP on the availability of N, P, and K in the soil, contrasting tendencies were observed. On one side, a positive curvilinear relationship was found between the availability of N and the increase in the AAP. On the other side, the available P content significantly decreased with increasing AAP. In conclusion, the excessive AAP resulted in increases in total N and low availability of P, thereby altering the dynamics of the nutrients and the carbon balance of the tropical forest
La precipitación promedio anual (PPA) es uno de los principales factores ambientales que regula el funcionamiento de los ecosistemas terrestres. El efecto del incremento de la PPA sobre la disponibilidad de los nutrientes edáficos es aun pobremente comprendido, principalmente en zonas tropicales de alta pluviosidad. Para evaluar la influencia de la alta PPA sobre la disponibilidad de N, P y K en el suelo, se midieron parámetros fisicoquímicos del suelo en tres bosques lluviosos tropicales de la región del Chocó biogeográfico con diferente PPA (7.500, 8.000 y 10.000 mm año-1). Además, se realizó una revisión bibliográfica que incluyó datos de distintos Ultisoles tropicales en sitios con PPA entre 1.800 y 10.000 mm año-1. Los suelos en el Chocó biogeográfico fueron extremadamente ácidos, con altos contenidos de Al, materia orgánica (MO) y N total, y cantidades bajas de P, Mg y Ca. Los valores de K fueron intermedios y la CICE fue baja. Por otra parte, al evaluar la influencia de la PPA sobre la disponibilidad de N, P y K del suelo, se observaron tendencias contrastantes. De un lado, se encontró una tendencia curvilínea positiva entre la disponibilidad de N y el aumento en PPA. Por otro lado, el contenido de P disponible disminuyó significativamente con el incremento en PPA, mientras que el contenido de K edáfico no presentó una relación significativa con PPA. En conclusión, la PPA excesiva ocasionó incrementos en N total y baja disponibilidad de P, lo cual se altera la dinámica de nutrientes y el balance de carbono de los bosques húmedos tropicales.

DOI: https://doi.org/10.15446/rfna.v69n1.54749

Precipitation effects on soil characteristics in tropical rain forests of the Chocó biogeographical region

Efectos de la precipitación sobre las características del suelo en bosques lluviosos tropicales de la región del Chocó biogeográfico

 

Harley Quinto-Mosquera1 and Flavio Moreno-Hurtado2

 

1 Programa de Biología. Facultad de Ciencias Básicas. Universidad Tecnológica del Chocó "Diego Luis Córdoba". A.A. 292, Quibdó, Colombia.
2 Departamento de Ciencias Forestales. Facultad de Ciencias Agrarias. Universidad Nacional de Colombia. A.A. 1779, Medellín, Colombia. <fhmoreno@unal.edu.co>

 

Received: December 12, 2014; Accepted: September 16, 2015

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


ABSTRACT
Average annual precipitation (AAP) is one of the principal environmental factors that regulates processes in terrestrial ecosystems. The effect of AAP on the availability of edaphic nutrients is poorly understood, especially in tropical zones with high rainfall. In order to evaluate the effects of high AAP on the availability of soil N, P, and K, physicochemical parameters were measured in soils of three tropical rainforests in the Chocó biogeographical region with different AAPs (7,500, 8,000, and 10,000 mm yr-1). Furthermore, a bibliographical review was carried out that including studies for distinct tropical Ultisols and AAP ranging from 1,800 to 10,000 mm yr-1. The evaluated soils presented extreme acidity with high contents of Al, organic matter (OM) and total N, and low quantities of P, Mg, and Ca. The K concentrations were intermediate and the effective cation exchange capacity (ECEC) was low. On the other hand, in the evaluation of the influence of the AAP on the availability of N, P, and K in the soil, contrasting tendencies were observed. On one side, a positive curvilinear relationship was found between the availability of N and the increase in the AAP. On the other side, the available P content significantly decreased with increasing AAP. In conclusion, the excessive AAP resulted in increases in total N and low availability of P, thereby altering the dynamics of the nutrients and the carbon balance of the tropical forest.

Key words: Lixiviation, Nutrient limitation, Tropical rainforest, Ultisol.

RESUMEN
La precipitación promedio anual (PPA) es uno de los principales factores ambientales que regula el funcionamiento de los ecosistemas terrestres. El efecto del incremento de la PPA sobre la disponibilidad de los nutrientes edáficos es aun pobremente comprendido, principalmente en zonas tropicales de alta pluviosidad. Para evaluar la influencia de la alta PPA sobre la disponibilidad de N, P y K en el suelo, se midieron parámetros fisicoquímicos del suelo en tres bosques lluviosos tropicales de la región del Chocó biogeográfico con diferente PPA (7.500, 8.000 y 10.000 mm año-1). Además, se realizó una revisión bibliográfica que incluyó datos de distintos Ultisoles tropicales en sitios con PPA entre 1.800 y 10.000 mm año-1. Los suelos en el Chocó biogeográfico fueron extremadamente ácidos, con altos contenidos de Al, materia orgánica (MO) y N total, y cantidades bajas de P, Mg y Ca. Los valores de K fueron intermedios y la CICE fue baja. Por otra parte, al evaluar la influencia de la PPA sobre la disponibilidad de N, P y K del suelo, se observaron tendencias contrastantes. De un lado, se encontró una tendencia curvilínea positiva entre la disponibilidad de N y el aumento en PPA. Por otro lado, el contenido de P disponible disminuyó significativamente con el incremento en PPA, mientras que el contenido de K edáfico no presentó una relación significativa con PPA. En conclusión, la PPA excesiva ocasionó incrementos en N total y baja disponibilidad de P, lo cual se altera la dinámica de nutrientes y el balance de carbono de los bosques húmedos tropicales.

Palabras claves: Lixiviación, Limitación de nutrientes, Bosques tropicales, Ultisoles.


 

Average annual precipitation (AAP) is one of the principal environmental factors that regulate processes of terrestrial ecosystems (Chapin III et al., 2002). The effect of variations in frequency, intensity, and seasonality of the AAP has been documented on fundamental processes such as photosynthesis (Salisbury and Ross, 1994), net primary productivity (NPP) (Schuur, 2003), development and meteorization of soils (Jenny, 1941; Buol et al., 1981) and availability and recycling of nutrients (Schuur and Matson, 2001; Santiago et al., 2005; Alvarez-Clare and Mack, 2011), among others. Increasing AAP increases depth of carbonates, inorganic nitrogen and clay, as well as soil acidity and losses of nutrients through lixiviation (Jenny, 1941; Austin and Vitousek, 1998). In addition, greater AAP changes the C/N ratio and the concentration of foliar nutrients, and reduces organic matter (OM) decomposition rates, mineralization of soil N and organic P, as well as nitrification (Schuur and Matson, 2001; Schuur, 2003; Santiago et al., 2005; Alvarez-Clare and Mack, 2011; Posada and Schuur, 2011).

Soil nutrient availability affects soil fertility, photosynthesis, plant growth, and productivity of terrestrial ecosystems (Salisbury and Ross, 1994; Chapin III et al., 2002). It has been documented that contents of N, P, and K limit the biological processes of tropical ecosystems (Tripler et al., 2006; Elser et al., 2007; LeBauer and Treseder, 2008; Vitousek et al., 2010) and that AAP levels affect the availability of nutrients (Austin and Vitousek, 1998; Posada and Schuur, 2011). Evaluating the relationship between these two variables is vital for improving the understanding of the ecology of tropical rainforests, and particularly for understanding the effect of changing AAPs that may result from shifts in global climate.

Results of studies on relationship between AAP and concentrations of N, P, and K in the soil of tropical forests are diverse. For example, Austin and Vitousek (1998) reported significant reductions of soil total N, available P, and exchangeable K with increasing AAP. Contrarily, Jenny (1941), Santiago et al. (2005) and Posada and Schuur (2011), reported increases in total soil N with increased AAP, whereas Alvarez-Clare and Mack (2011) did not find evidence of reduced edaphic P or N with an increase in AAP. A methodological limitation may have caused this variation because the majority of the studies were carried out in sites with AAPs under 5,000 mm yr-1. Only Posada and Schuur (2011) presented data from forests with AAP of up to 9,510 mm yr-1.

The central Pacific region of Colombia, which presents some of the highest AAPs in the world (> 7000 mm yr-1) (Poveda et al., 2004), offers a tremendous opportunity to evaluate hypotheses related to the influence of AAPs on N, P, and K concentrations in soils. As a result, this study is aimed to explore the relationship between edaphic concentrations of N, P, and K with the AAP of tropical rainforests and, in particular, the differences in the contents of these nutrients in soils of tropical rainforests of the Colombian Pacific region, which is subjected to high AAP levels. In order to accomplish these goals, the edaphic fertility of three tropical rainforests in the Colombian Pacific region was evaluated, and a bibliographic review was carried out that included data on the edaphic content of N, P, and K of Ultisol soils from low-altitude tropical rainforests.

 

MATERIALS AND METHODS

Location
The study area is located in the tropical rainforests of the localities of Pacurita (municipality of Quibdó), Salero (municipality of Unión Panamericana) and Opogodó (municipality of Condoto), in the department of Chocó, Colombia. These locations form part of the ecogeographic subregion of the Central North of Chocó biogeographical area, which contains the high-altitude watersheds of the Atrato and San Juan rivers, with piedmont and low hills, and moist, terraced soils developed from transitional sedimentary rock. These sites are on tertiary sedimentary hills between 100 and 200 m in altitude and were formed by sedimentary rocks composed of sandy argillite, sandstone and limestone (Poveda et al., 2004). The characteristics of the study sites are described in Table 1.

Plot Establishment
Seven permanent 1-ha plots were established between 2005 and 2013 using the BIOTROP methodology (García et al., 2003; Melo and Vargas, 2003). The two plots in Salero consisted of 20 x 500 m rectangles and the other five plots established in Opogodó and Pacurita consisted of 100 x 100 m squares. These plots were divided into 25, 20 x 20 m sampling units (400 m2) in which soil samples were taken for the present study.

Soil Analysis
In order to evaluate soil fertility, compound soil samples were taken from each sampling unit that was a mixture of 5 samples taken at a depth of 20 cm from the four corners and the center of the sampling plots. In each of the seven plots, 25 compound samples were taken for a total of 175 samples. Clay, sand and silt percentage, pH, OM content, and N, P, K, Ca, Mg concentrations were analyzed using the following techniques: Bouyoucos for textural fractions, potentiometric in water solution (1:2) for pH, Walkley and Black for OM, Micro- Kjeldahl technique for total N, ascorbic acid in an UV-VIS spectrophotometer after extraction with the Bray II method for available P, atomic absorption for Ca, Mg, and K extracted with ammonium acetate (Osorio, 2014).

In order to relate the edaphic concentration of nutrients to the AAP, a bibliographic review was conducted including data from similar depth to the one used in this study (0-20cm) for Ultisols from tropical rainforests. The studies included in the analysis came from Alvarez-Clare and Mark (2011), Aragão et al. (2009), John et al. (2007), Palmiotto et al. (2004), Powers et al. (2005), Ruokolainen et al. (2007), and Santiago et al. (2005). This analysis covered an AAP range of 1,800 to 10,000 mm yr-1, and altitudes between 50 and 900 m.

Statistical analysis
In order to compare the soil characteristics (texture, OM, pH, Al, N, P, Ca, K, Mg, ECEC) of the three study sites (Salero, Opogodó and Pacurita), the non-parametric test of Mann-Whitney was used for total N and the Kruskal Wallis test was used for the other soil characteristics because they did not comply with the assumptions of normality and homogeneity of variance for the data, as evaluated with the tests of Bartlett and Hartley. Spearman correlation analysis between sand percentage and other soil characteristics was used. Lineal and polynomial regression analyses were used to relate soil N, P, and K concentrations to AAP (Hoshmand, 1998). The analyses were carried out with the Statgraphics Centurion XV (StatisticalGraphics Corp., 2002) and The R Project for Statistical Computing (www.r-project.org/) software.

 

RESULTS AND DISCUSSION

Characteristics of the rainforest soils of the Chocó biogeographical region
The soils of the tropical rainforests Salero, Opogodó and Pacurita were extremely acidic, with high Al saturation in Salero (38.5%) and Pacurita (57.2%) and low in Opogodó (12.7%). Likewise, high concentrations of soil OM and total N were seen in the majority of the sampling units in Opogodó (OM = 11.9%; N = 0.61%). However, the soil P, Mg, and Ca were very low, while the values of K were intermediate and the ECEC was low in the three zones.

The low pH of soils from the forests of this study agreed with studies in low-altitude tropical rainforests (Buol et al., 1981; Vitousek, 1984; Vitousek and Sanford, 1986; Malagón et al., 1995; Powers et al., 2005; Posada and Schuur, 2011). The acidic condition is mainly generated by the lixiviation of basic cations (Ca, Mg, K and Na) and the accumulation of acid cations (Al and H) because of environmental factors such as high AAP; among other causal factors of acidification in these soils are high OM contents that release carbonic acid and the symbiotic fixation of N2 that releases H+ ions (Jenny, 1941; Sadzawka and Campillo, 1993).

With the exception of exchangeable Ca, all of the fertility parameters presented significant differences among sites (Table 2). The soils from Pacurita, which were subjected to the highest AAP (10,000 mm yr-1), presented higher acidity, clay contents, Al saturation, and ECEC, and lower concentrations of OM, total N, K, and Mg. The soils from Opogodó, which were subjected to the lowest precipitation among the studied sites (8,000 mm yr-1), presented higher contents of sand, OM, and total N. Finally, the soils of Salero, registered high silt content.

The OM concentrations were high in the studied ecosystems of Chocó, with significant variations between sites, which can be attributed to differences in the AAP, but mainly due to litterfall (Unpublished data from a companion study) and topographical conditions (Table 2). For example, in Salero and Pacurita, the terrain presented higher sloping (topography≈24.5%) and small hills that favor drainage and the mechanical dragging of OM over the soil by surface runoff; while in Opogodó, the topography was flatter (topography=7.5%), which reduces the loss of OM from the soil.

The high accumulation of OM in the soils of Salero, Pacurita, and Opogodó can be explained by the abundant AAP and its consequent lixiviation of soil, which have the potential of decreasing the decomposition rate of OM (Schuur 2001) and the foliar concentrations of N, P, Ca, and Mg, as well as increasing C/N ratio (Austin and Vitousek, 1998; Schuur and Matson, 2001; Santiago et al., 2005; Posada and Schuur, 2011). The decomposing activity of microorganisms can be reduced by the low availability of nutrients (Kaspari et al., 2008) and lack of oxygen in the soil (Schuur and Matson, 2001; Schuur, 2003). As a result, turnover time of organic C in the soil may increase (Posada and Schuur, 2011), and consequently greater amounts of OM accumulate.

In the soils of Pacurita and Opogodó, total N concentration was high, which was probably due to high biological fixation rates resulting from the abundance of legumes in these forests (Cleveland et al., 1999). On the other hand, the concentrations of P, Mg, and Ca were very low, possibly due to the strong influence of the lixiviation caused by the intense rainfall (Jenny, 1941; Austin and Vitousek, 1998; Santiago et al., 2005). These results suggest that nutrient inputs to the soil through the meteorization of the sedimentary rocks, the OM production, and the deposition by rain and foliage washing are not enough to compensate for the losses caused by lixiviation. Consequently, these forests seem to be limited by P, Mg, and Ca availability, which has significant effects on NPP, soil microbial activity, and nutrient recycling (Austin and Vitousek, 1998; Kaspari et al., 2008).

Soil texture showed significant correlations with several soil parameters (Table 3). For example, putting together the data of the three plots, sand percentage was positively correlated with pH, OM, total N, and Mg; correlations were negative with Al, P, and ECEC. Inversely, the percentage of clay was negatively correlated with pH, OM, total N, and Mg, while with Al and ECEC the association was positive. However, the magnitude and direction of individual correlations varied among sites. According to these results, in general, the higher clay content in the soils, the more acidic and poorer in nutrients, which could occur because the exchange positions of soil matrix are occupied by Al, which displaces nutrients of such positions (Sadzawka and Campillo, 1993). Consequently, it is expected that forests in clayey soils show lower growth and productivity because of limitations imposed by lower nutrient levels (Kaspari et al., 2008).

Influence of precipitation on the concentration of nutrients (N, P, and K) in the soil of tropical rainforests
A significant relationship was found between AAP and total soil N of ultisols of low-altitude tropical rainforests (P < 0.001). The total N increased with increasing AAP, from 2,000 mm yr-1 to 8,000 mm yr-1, but over this precipitation level, total N tended to decrease (Figure 1, Table 4). Under 8,000 mm yr-1, the total N increased linearly with rainfall, which agrees with results reported by Jenny (1941), Santiago et al. (2005), and Posada and Schuur (2011), who also documented increases in the soil N content with increased AAP. However, other authors reported different results: Austin and Vitousek (1998) and Schuur and Matson (2001) found that the total N decreased with increased rainfall, while Alvarez-Clare and Mack (2011) found a weak relationship between total N and rainfall in soils of Costa Rica. These differences in the association between AAP and total N are probably due to the influence of other environmental factors, occurring at the local level in each site that overcome the effect of AAP on the total available N in the soil. Among those factors are the variation of texture (see Table 3), litter quality, rates of OM decomposition (Austin and Vitousek, 1998; Santiago et al., 2005), and availability of nutrients, which affect the biological fixation of N (Vitousek et al., 2010).

The linear increase of total N with rainfall for precipitation under 8,000 mm yr-1 is probably because the lower decomposition rate of litter as well as nitrification and mineralization of N with increased AAP (Austin and Vitousek, 1998; Schuur and Matson, 2001; Santiago, 2003, Santiago et al., 2005; Alvarez-Clare and Mack, 2011). As a result, N tends to accumulate on the soil. The reduction of the mineralization of N is perhaps due to the changes in the litter quality due to foliar washing of nutrients (Santiago et al., 2005), to the anaerobic conditions, which can occur as a result of excessive rainfall (Wright et al., 2001; Schuur and Matson, 2001), and to low availability of nutrients such as P and Ca due to lixiviation. This would affect the activity of aerobic soil microorganisms under conditions of high rainfall, as seen in the forests of Chocó.

When AAP surpassed 8000 mm yr-1, soil total N decreased. Unfortunately, there are no data in the literature for sites that have such a high precipitation, so it is not possible to compare our results. This result was unexpected, so we considered that local factors determine this behavior. In effect, as shown above, the terrain of the evaluated plots in this location present a topography with hills and ravines (Table 2), which favors the soil drainage, the lixiviation, and flow of nutrients and, as a consequence, increased the probability of mineralization and loss of edaphic N.

There was also a significant relationship between AAP and soil available P (P < 0.001) (Figure 1, Table 4). Soil available P decreased with increased AAP in tropical areas of the world. Similar tendencies were reported by Austin and Vitousek (1998) and Santiago et al. (2005) in tropical soils. Contrary to this, Alvarez-Clare Mack (2011) did not find significant correlations between the extractable P in the soil and the AAP in tropical moist forest in Costa Rica. According to these authors, these differences were due to fact the total P was measured, which is less susceptible to changes in AAP, while the present study evaluated the available P.

Prior studies have documented that soil available P is determined by several environmental factors, including the meteorization rate of rocks, type of clay mineral, retention of oxides of Fe and Al, pH, texture, OM content, microorganism activity and lixiviation (Schlesinger, 1997; Osorio, 2014). The decrease of available P in the soil with the increased AAP showed in Figure 1 was probably associated with various processes unleashed by high precipitation: firstly, the strong influence of lixiviation, which produces P losses that exceed the inputs from meteorization of rocks (Austin and Vitousek, 1998). Additionally, the high AAP give rise to the accumulation of acid cations (Al and H) and the formation of oxides and sesquioxides of Fe and Al in the soil (Sadzawka and Campillo, 1993), which tend to immobilize P by adsorption on the surface of these minerals (Schlesinger, 1997) and also by the formation of phosphates of Al and Fe (AlPO4·2H2O, FePO4·2H2O) when reacting with free ions of Fe3+ and Al+ in the soil solution.

Finally, the edaphic content of exchangeable K did not present a significant correlation with AAP (P > 0.7) (Figure 1). Santiago et al. (2005) and Schuur and Matson (2001) did not observe correlations between the exchangeable K content and the AAP either. On the other hand, Austin and Vitousek (1998) found significant reductions in the edaphic concentration of exchangeable K with an increase in rainfall in the tropical soils of Hawaii. This decrease in soil K was probably caused by lixiviation that increased with rainfall (Austin and Vitousek, 1998), which can generate K losses of 120 - 250 kg ha-1 yr-1 in tropical soils (Osorio, 2014). The stability of the edaphic concentration of K with the increased AAP found in the present study was probably due to the total losses being compensated for by the inputs into the soil from the forest ecosystem. In effect, this ion is very soluble, resulting in high losses due to lixiviation in humid tropics, as well as high inputs to the soil due to washing from the forest canopy by rainfall, with values of 13 - 220 kg ha-1 yr-1 (Vitousek and Sanford, 1986). Additionally, K+ is easily released to the soil from decomposing organic residues (Osorio, 2014). However, the lack of an effect of increased AAP on soil K deserves further mechanistic studies to test them.

 

CONCLUSIONS

The positive correlatsion between AAP and soil total N, as well as the inversely proportional relationship between AAP and available P concentration in soils of low tropical forests, suggest that the availability of P, contrary to that of N, is potentially limited by the AAP in these ecosystems. Likewise, if significant changes occur in the AAP of tropical rainforests resulting from the global climate change, the recycling of nutrients will be considerably affected in these ecosystems, which would have significant consequences for their dynamics.

 

ACKNOWLEGEMENTS

This research was co-financed by the Universidad Tecnológica del Chocó "Diego Luis Córdoba", the Universidad Nacional de Colombia Sede Medellín and the Departamento Administrativo de Ciencia, Tecnología e Innovación - COLCIENCIAS (Agreement 0010-2013), within the project "Evaluación del efecto de la fertilización del suelo sobre la productividad primaria neta de bosques pluviales tropicales del departamento del Chocó." The fieldwork of biologist Danilza Marcela Bellido and the members of the research group Cambio Climático y Biodiversidad and the comments provided by professor Nelson Walter Osorio Vega of the Universidad Nacional de Colombia, Medellín campus, were essential to this study. We also appreciate the hospitality and collaboration in the field of the local people in the municipalities of Opogodó, Pacurita, and Salero. Finally, we are thankful with two anonymous referees who gave important inputs to improve the manuscript.

 

REFERENCES

Alvarez-Clare S. and M.C. Mack. 2011. Influence of precipitation on soil and foliar nutrients across nine Costa Rican forests. Biotropica 43(4): 433-441. doi: 10.1111/j.1744-7429.2010.00732.x.

Aragão, L.E.O., Y. Malhi, D.B. Metcalfe, J.E. Silva-Espejo, E. Jiménez, D. Navarrete, S. Almeida, A.C.L. Costa, N. Salinas, O.L. Phillips, L.O. Anderson, T.R. Baker, P.H. Goncalvez, J. Huamán-Ovalle, M. Mamani-Solórzano, P. Meir, A. Monteagudo, M.C. Peñuela, A. Prieto, C.A. Quesada, A. Rozas-Dávila, A. Rudas, J.A. Silva Junior, and R. Vásquez. 2009. Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils. Biogeosciences Discuss., 6(1): 2441-2488. doi: 10.5194/bgd-6-2441-2009.

Austin A.T., and P.M. Vitousek 1998. Nutrient dynamics on a precipitation gradient in Hawaii. Oecologia 113(4): 519-529. Doi: 10.1007/s004420050405.

Barreto, J.S., A.J Duque, D. Cárdenas, and F.H. Moreno. 2010. Variación florística de especies arbóreas a escala local en un bosque de tierra firme en la Amazonia colombiana. Acta Amazonica 40(1): 179-188. doi: 10.1590/s0044-59672010000100023.

Buol, S.W., F.D. Hole and R.J. McCracken. 1981. Génesis y Clasificación de Suelos. Primera edición. Editorial Trillas S.A., México D.F. México. 417 p.

Chapin III, F.S., P.A. Matson, and H.A. Mooney. 2002. Principles of terrestrial ecosystem ecology. Springer-Verlag, New York, United States of America. 436 p.

Cleveland, C.C.; A.R. Townsend, D.S. Schimel, H. Fisher, R.W. Howarth, L.O. Hedin, S.S. Perakis, E.F. Latty, J. C. Von Fischer, A. Elseroad, and M.F. Wasson. 1999. Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochem Cycles. 13(2): 623 - 645. doi: 10.1029/1999gb900014.

Cleveland, C.C., Townsend, A.R., and S.K. Schmidt. 2002. Phosphorus limitation of microbial processes in moist tropical forests: evidence from short-term laboratory incubations and field studies. Ecosystems 5(7): 0680-0691. doi: 10.1007/s10021-002-0202-9.

Elser, J.J., M.E.S. Bracken, E.E. Cleland, D.S. Gruner, W.S. Harpole, H. Hillebrand, J.T. Ngai, E.W. Seabloom, J.B. Shurin, and J.E. Smith. 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters 10(12): 1135- 1142. doi: 10.1111/j.1461-0248.2007.01113.x.

García, F., Y. Ramos, J. Palacios, J.E. Arroyo, A. Mena, and M. González. 2003. SALERO Diversidad biológica de un bosque pluvial tropical (bp-T). Editorial Guadalupe Ltda, Bogotá, Colombia. 213 p.

Gardi, C., M. Angelini, S. Barceló, J. Comerma, C. Cruz, A. Encina, A. Jones, P. Krasilnikov, M.L. Mendonça, L. Montanarella, O. Muñiz, P. Schad, M.I. Vara, and R. Vargas (eds). 2014. Atlas de suelos de América Latina y el Caribe, Comisión Europea - Oficina de Publicaciones de la Unión Europea, L-2995 Luxembourg, 176 pp.

Hoshmand, A.R. 1998. Statistical methods for environmental and agricultural sciences. Second edition. CRC Press LLC, New York, United States of America. 439. p.

Jenny H. 1941. Factors of soil formation. McGraw-Hill, New York. 271 p.

John, R.; J.W. Dalling, K.E. Harms, J.B. Yavitt, R.F. Stallard, M. Mirabello, S.P. Hubbell, R. Valencia, H. Navarrete, M. Vallejo, and R.B. Foster. 2007. Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences PNAS. 104 (3): 864 - 869. doi: 10.1073/pnas.0604666104.

Kaspari M, M.N. Garcia, K.E. Harms, M. Santana, S.J. Wright., and J.B. Yavitt. 2008. Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecology Letters 11: 35-43. doi: 10.1111/j.1461-0248.2007.01124.x.

Laurance, S.G.W., W.F. Laurance, A. Andrade, P.M. Fearnside, K.E. Harms, A. Vicentini, and R.C.C. Luizão. 2010. Influence of soils and topography on Amazonian tree diversity: a landscape-scale study. Journal of Vegetation Science 21(1): 96-106. doi: 10.1111/j.1654-1103.2009.01122.x.

LeBauer, D.S. and K. Treseder. 2008. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89(2): 371-379. doi: 10.1890/06-2057.1.

Malagon D., C. Pulido, R.D. Llinas, C. Chamorro, y J. Fernández. 1995. Suelos de Colombia. Origen, Evolución, Clasificación, Distribución y uso. Instituto Geográfico Agustín Codazzi. Subdirección de Agrología, Santafe de Bogotá, Colombia. 632 p.

Malhi, Y., L.E.O.C. Aragão, D.B. Metcalfe, R. Paiva, C.A. Quesada, S. Almeida, L. Anderson, P. Brando, J.Q. Chambers, A.C.L. Da Costa, L.R. Hutyra, P. Oliveira, S. Patiño, E.H. Pyle, A.L. Robertson, And L.M. Teixeira. 2009. Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Global Change Biology 15(5): 1255-1274. doi: 10.1111/j.1365-2486.2008.01780.x.

Melo, O. and R.Vargas. 2003. Evaluación Ecológica y Silvicultural de Ecosistemas Boscosos. Universidad del Tolima, CRQ, CARDER. CORPOCALDAS, CORTOLIMA. p. 235.

Osorio, N.W. 2014. Manejo de nutrientes en suelos del Trópico. Segunda edición. Universidad Nacional de Colombia, sede Medellín, Medellín, Colombia. p. 416.

Palmiotto, P.A., S.J. Davies, K.A. Vogt, M.S. Ashton, D.J. Vogt and P.S. Ashton. 2004. Soil-related habitat specialization in dipterocarp rain forest tree species in Borneo. Journal of Ecology. 92(4): 609 - 623. doi: 10.1111/j.0022-0477.2004.00894.x.

Paoli, G.D., L.M. Curran, and D.R. Zak. 2006. Soil nutrients and beta diversity in the Bornean Dipterocarpaceae: evidence for niche partitioning by tropical rain forest trees. Journal of Ecology 94(1): 157-170. doi: 10.1111/j.1365-2745.2005.01077.x.

Paoli, G.D. and L.M. Curran. 2007. Soil nutrients limit fine litter production and tree growth in mature lowland forest of Southwestern Borneo. Ecosystems 10(3): 503-518. doi: 10.1007/s10021-007-9042-y.

Peña, M.A., and A. Duque. 2013. Patterns of stocks of aboveground tree biomass, dynamics, and their determinants in secondary Andean forests. Forest Ecology and Management, 302(1): 54-61. doi: 10.1016/j.foreco.2013.03.025.

Posada J.M. and E.A.G. Schuur. 2011. Relationships among precipitation regime, nutrient availability, and carbon turnover in tropical rain forests. Oecologia 165(3): 783-795. doi: 10.1007/s00442-010-1881-0.

Poveda, I.C., C. Rojas, A. Rudas, and O. Rangel. 2004. El Chocó biogeográfico: Ambiente Físico. In Rangel, O. (ed.), Colombia diversidad biótica IV El Chocó biogeográfico/ Costa Pacífica. Instituto de Ciencias Naturales. Universidad Nacional de Colombia, Santafe de Bogotá D.C. 1024 p.

Powers, J., S. Treseder, and M.T. Lerdau. 2005. Fine roots, arbuscular mycorrhizal hyphae and soil nutrients in four Neotropical rain forests: patterns across large geographic distances. New Phytologist. 165(3): 913-921. doi: 10.1111/j.1469-8137.2004.01279.x.

Poulsen, A.D., H. Tuomisto, and H. Balslev. 2006. Edaphic and floristic variation within a 1-ha plot of lowland amazonian rain forest1. Biotropica 38(4): 468-478. doi: 10.1111/j.1744-7429.2006.00168.x.

Ruiz - Murcia, J.F. 2010. Cambio climático en temperatura, precipitación y humedad relativa para colombia usando modelos meteorológicos de alta resolución (Panorama 2011-2100). Instituto de Hidrología, Meteorología y Estudios Ambientales - IDEAM. Subdirección de Meteorología. Nota Técnica IDEAM-METEO/005-2010., Bogotá, D.C., mayo 2010. p. 91.

Ruokolainen, K., H. Tuomisto, M.J. Macía, M.A. Higgins, and M. Yli-Halla. 2007. Are floristic and edaphic patterns in Amazonian rain forests congruent for trees, pteridophytes and Melastomataceae?. Journal of Tropical Ecology 23(1): 13-25. doi: 10.1017/s0266467406003889.

Sadzawka R.A. and R.R. Campillo. 1993. Problemática de la acidez de los suelos de la IX Región. I. Génesis y características del proceso. Investigación y Progreso Agropecuario Carillanca. 12(3): 3-7.

Salisbury, F.B. and C.W. Ross. 1994. Fisiología Vegetal. Cuarta edición. Grupo Editorial Iberoamérica S.A., México. D.F. p. 759.

Santiago, L.S., E.A.G. Schuur, and K. Silvera. 2005. Nutrient cycling and plant-soil feedbacks along a precipitation gradient in lowland Panama. Journal of Tropical Ecology 21(4): 461-470. doi: 10.1017/s0266467405002464.

Schlesinger, W.H. 1997. Biogeochemistry: An analysis of global change. Second edition. Academic Press, San Diego, California. USA. 588 p.

Schuur, E.A. 2003. Productivity and global climate revisited: the sensitivity of tropical forest growth to precipitation. Ecology 84:1165-1170. doi: 10.1890/0012-9658(2003)084[1165:PAGCRT]2.0.CO;2

Schuur, E.A.G. 2001. The effect of water on decomposition dynamics in mesic to wet Hawaiian montane forests. Ecosystems, 4(3): 259-273. doi: 10.1007/s10021-001-0008-1.

Schuur, E.A. and P.A. Matson, 2001. Net primary productivity and nutrient cycling across a mesic to wet precipitation gradient in Hawaiian montane forest. Oecologia 128(3): 431-442. doi: 10.1007/s004420100671.

Statistical Graphics Corp. 2002. Statgraphics Plus Centurium Version 5.1. www.Statgraphics.Com. The R Project for Statistical Computing (www.r-project.org/)

Tripler, C.E., S.S. Kaushal, G.E. Likens, and M.T. Walter. 2006. Patterns in potassium dynamics in forest ecosystems. Ecology Letters 9(4): 451-466. doi: 10.1111/j.1461-0248.2006.00891.x.

Vitousek, P.; S. Porder, B.Z. Houlton and O.A. Chadwick. 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications. 20(1): 5-15. doi: 10.1890/08-0127.1.

Vitousek P.M. 1984. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65(1): 285-298. doi: 10.2307/1939481.

Vitousek, P.M., and R.L. Sanford Jr. 1986. Nutrient cycling in moist tropical forest. Annual Review of Ecology and Systematics 17 (1): 137-167. doi: 10.1146/annurev.es.17.110186.001033.

West, R. 1957. Las tierras bajas del Pacífico colombiano. Instituto Colombiano de Antropología. Imprenta Nacional de Colombia, Bogotá, D.C. 300 p.

Wright, R., B. Lockaby, and M.R. Walbridge. 2001. Phosphorus availability in an artificially flooded southeastern floodplain forest soil. Soil Science Society of America Journal 65(4): 1293-1302. doi: 10.2136/sssaj2001.6541293x.

References

Alvarez-Clare S. and M.C. Mack. 2011. Influence of precipitation on soil and foliar nutrients across nine Costa Rican forests. Biotropica 43(4): 433-441. doi: 10.1111/j.1744-7429.2010.00732.x.

Aragão, L.E.O., Y. Malhi, D.B. Metcalfe, J.E. Silva-Espejo, E. Jiménez, D. Navarrete, S. Almeida, A.C.L. Costa, N. Salinas, O.L. Phillips, L.O. Anderson, T.R. Baker, P.H. Goncalvez, J. Huamán-Ovalle, M. Mamani-Solórzano, P. Meir, A. Monteagudo, M.C. Peñuela, A. Prieto, C.A. Quesada, A. Rozas-Dávila, A. Rudas, J.A. Silva Junior, and R. Vásquez. 2009. Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils. Biogeosciences Discuss., 6(1): 2441-2488. doi: 10.5194/bgd-6-2441-2009.

Austin A.T., and P.M. Vitousek 1998. Nutrient dynamics on a precipitation gradient in Hawaii. Oecologia 113(4): 519-529. Doi: 10.1007/s004420050405.

Barreto, J.S., A.J Duque, D. Cárdenas, and F.H. Moreno. 2010. Variación florística de especies arbóreas a escala local en un bosque de tierra firme en la Amazonia colombiana. Acta Amazonica 40(1): 179-188. doi: 10.1590/s0044-59672010000100023.

Buol, S.W., F.D. Hole and R.J. McCracken. 1981. Génesis y Clasificación de Suelos. Primera edición. Editorial Trillas S.A., México D.F. México. 417 p.

Chapin III, F.S., P.A. Matson, and H.A. Mooney. 2002. Principles of terrestrial ecosystem ecology. Springer-Verlag, New York, United States of America. 436 p.

Cleveland, C.C.; A.R. Townsend, D.S. Schimel, H. Fisher, R.W. Howarth, L.O. Hedin, S.S. Perakis, E.F. Latty, J. C. Von Fischer, A. Elseroad, and M.F. Wasson. 1999. Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochem Cycles. 13(2): 623 - 645. doi: 10.1029/1999gb900014.

Cleveland, C.C., Townsend, A.R., and S.K. Schmidt. 2002. Phosphorus limitation of microbial processes in moist tropical forests: evidence from short-term laboratory incubations and field studies. Ecosystems 5(7): 0680-0691. doi: 10.1007/s10021-002-0202-9.

Elser, J.J., M.E.S. Bracken, E.E. Cleland, D.S. Gruner, W.S. Harpole, H. Hillebrand, J.T. Ngai, E.W. Seabloom, J.B. Shurin, and J.E. Smith. 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters 10(12): 1135- 1142. doi: 10.1111/j.1461-0248.2007.01113.x.

García, F., Y. Ramos, J. Palacios, J.E. Arroyo, A. Mena, and M. González. 2003. SALERO Diversidad biológica de un bosque pluvial tropical (bp-T). Editorial Guadalupe Ltda, Bogotá, Colombia. 213 p.

Gardi, C., M. Angelini, S. Barceló, J. Comerma, C. Cruz, A. Encina, A. Jones, P. Krasilnikov, M.L. Mendonça, L. Montanarella, O. Muñiz, P. Schad, M.I. Vara, and R. Vargas (eds). 2014. Atlas de suelos de América Latina y el Caribe, Comisión Europea - Oficina de Publicaciones de la Unión Europea, L-2995 Luxembourg, 176 pp.

Hoshmand, A.R. 1998. Statistical methods for environmental and agricultural sciences. Second edition. CRC Press LLC, New York, United States of America. 439. p.

Jenny H. 1941. Factors of soil formation. McGraw-Hill, New York. 271 p.

John, R.; J.W. Dalling, K.E. Harms, J.B. Yavitt, R.F. Stallard, M. Mirabello, S.P. Hubbell, R. Valencia, H. Navarrete, M. Vallejo, and R.B. Foster. 2007. Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences PNAS. 104 (3): 864 - 869. doi: 10.1073/pnas.0604666104.

Kaspari M, M.N. Garcia, K.E. Harms, M. Santana, S.J. Wright., and J.B. Yavitt. 2008. Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecology Letters 11: 35-43. doi: 10.1111/j.1461-0248.2007.01124.x.

Laurance, S.G.W., W.F. Laurance, A. Andrade, P.M. Fearnside, K.E. Harms, A. Vicentini, and R.C.C. Luizão. 2010. Influence of soils and topography on Amazonian tree diversity: a landscape-scale study. Journal of Vegetation Science 21(1): 96-106. doi: 10.1111/j.1654-1103.2009.01122.x.

LeBauer, D.S. and K. Treseder. 2008. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89(2): 371-379. doi: 10.1890/06-2057.1.

Malagon D., C. Pulido, R.D. Llinas, C. Chamorro, y J. Fernández. 1995. Suelos de Colombia. Origen, Evolución, Clasificación, Distribución y uso. Instituto Geográfico Agustín Codazzi. Subdirección de Agrología, Santafe de Bogotá, Colombia. 632 p.

Malhi, Y., L.E.O.C. Aragão, D.B. Metcalfe, R. Paiva, C.A. Quesada, S. Almeida, L. Anderson, P. Brando, J.Q. Chambers, A.C.L. Da Costa, L.R. Hutyra, P. Oliveira, S. Patiño, E.H. Pyle, A.L. Robertson, And L.M. Teixeira. 2009. Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Global Change Biology 15(5): 1255-1274. doi: 10.1111/j.1365-2486.2008.01780.x.

Melo, O. and R.Vargas. 2003. Evaluación Ecológica y Silvicultural de Ecosistemas Boscosos. Universidad del Tolima, CRQ, CARDER. CORPOCALDAS, CORTOLIMA. p. 235.

Osorio, N.W. 2014. Manejo de nutrientes en suelos del Trópico. Segunda edición. Universidad Nacional de Colombia, sede Medellín, Medellín, Colombia. p. 416.

Palmiotto, P.A., S.J. Davies, K.A. Vogt, M.S. Ashton, D.J. Vogt and P.S. Ashton. 2004. Soil-related habitat specialization in dipterocarp rain forest tree species in Borneo. Journal of Ecology. 92(4): 609 - 623. doi: 10.1111/j.0022-0477.2004.00894.x.

Paoli, G.D., L.M. Curran, and D.R. Zak. 2006. Soil nutrients and beta diversity in the Bornean Dipterocarpaceae: evidence for niche partitioning by tropical rain forest trees. Journal of Ecology 94(1): 157-170. doi: 10.1111/j.1365-2745.2005.01077.x.

Paoli, G.D. and L.M. Curran. 2007. Soil nutrients limit fine litter production and tree growth in mature lowland forest of Southwestern Borneo. Ecosystems 10(3): 503-518. doi: 10.1007/s10021-007-9042-y.

Peña, M.A., and A. Duque. 2013. Patterns of stocks of aboveground tree biomass, dynamics, and their determinants in secondary Andean forests. Forest Ecology and Management, 302(1): 54-61. doi: 10.1016/j.foreco.2013.03.025.

Posada J.M. and E.A.G. Schuur. 2011. Relationships among precipitation regime, nutrient availability, and carbon turnover in tropical rain forests. Oecologia 165(3): 783-795. doi: 10.1007/s00442-010-1881-0.

Poveda, I.C., C. Rojas, A. Rudas, and O. Rangel. 2004. El Chocó biogeográfico: Ambiente Físico. In Rangel, O. (ed.), Colombia diversidad biótica IV El Chocó biogeográfico/ Costa Pacífica. Instituto de Ciencias Naturales. Universidad Nacional de Colombia, Santafe de Bogotá D.C. 1024 p.

Powers, J., S. Treseder, and M.T. Lerdau. 2005. Fine roots, arbuscular mycorrhizal hyphae and soil nutrients in four Neotropical rain forests: patterns across large geographic distances. New Phytologist. 165(3): 913-921. doi: 10.1111/j.1469-8137.2004.01279.x.

Poulsen, A.D., H. Tuomisto, and H. Balslev. 2006. Edaphic and floristic variation within a 1-ha plot of lowland amazonian rain forest1. Biotropica 38(4): 468-478. doi: 10.1111/j.1744-7429.2006.00168.x.

Ruiz - Murcia, J.F. 2010. Cambio climático en temperatura, precipitación y humedad relativa para colombia usando modelos meteorológicos de alta resolución (Panorama 2011-2100). Instituto de Hidrología, Meteorología y Estudios Ambientales - IDEAM. Subdirección de Meteorología. Nota Técnica IDEAM-METEO/005-2010., Bogotá, D.C., mayo 2010. p. 91.

Ruokolainen, K., H. Tuomisto, M.J. Macía, M.A. Higgins, and M. Yli-Halla. 2007. Are floristic and edaphic patterns in Amazonian rain forests congruent for trees, pteridophytes and Melastomataceae?. Journal of Tropical Ecology 23(1): 13-25. doi: 10.1017/s0266467406003889.

Sadzawka R.A. and R.R. Campillo. 1993. Problemática de la acidez de los suelos de la IX Región. I. Génesis y características del proceso. Investigación y Progreso Agropecuario Carillanca. 12(3): 3-7.

Salisbury, F.B. and C.W. Ross. 1994. Fisiología Vegetal. Cuarta edición. Grupo Editorial Iberoamérica S.A., México. D.F. p. 759.

Santiago, L.S., E.A.G. Schuur, and K. Silvera. 2005. Nutrient cycling and plant-soil feedbacks along a precipitation gradient in lowland Panama. Journal of Tropical Ecology 21(4): 461-470. doi: 10.1017/s0266467405002464.

Schlesinger, W.H. 1997. Biogeochemistry: An analysis of global change. Second edition. Academic Press, San Diego, California. USA. 588 p.

Schuur, E.A. 2003. Productivity and global climate revisited: the sensitivity of tropical forest growth to precipitation. Ecology 84:1165-1170. doi: 10.1890/0012-9658(2003)084[1165:PAGCRT]2.0.CO;2

Schuur, E.A.G. 2001. The effect of water on decomposition dynamics in mesic to wet Hawaiian montane forests. Ecosystems, 4(3): 259-273. doi: 10.1007/s10021-001-0008-1.

Schuur, E.A. and P.A. Matson, 2001. Net primary productivity and nutrient cycling across a mesic to wet precipitation gradient in Hawaiian montane forest. Oecologia 128(3): 431-442. doi: 10.1007/s004420100671.

Statistical Graphics Corp. 2002. Statgraphics Plus Centurium Version 5.1. www.Statgraphics.Com. The R Project for Statistical Computing (www.r-project.org/)

Tripler, C.E., S.S. Kaushal, G.E. Likens, and M.T. Walter. 2006. Patterns in potassium dynamics in forest ecosystems. Ecology Letters 9(4): 451-466. doi: 10.1111/j.1461-0248.2006.00891.x.

Vitousek, P.; S. Porder, B.Z. Houlton and O.A. Chadwick. 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications. 20(1): 5-15. doi: 10.1890/08-0127.1.

Vitousek P.M. 1984. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65(1): 285-298. doi: 10.2307/1939481.

Vitousek, P.M., and R.L. Sanford Jr. 1986. Nutrient cycling in moist tropical forest. Annual Review of Ecology and Systematics 17 (1): 137-167. doi: 10.1146/annurev.es.17.110186.001033.

West, R. 1957. Las tierras bajas del Pacífico colombiano. Instituto Colombiano de Antropología. Imprenta Nacional de Colombia, Bogotá, D.C. 300 p.

Wright, R., B. Lockaby, and M.R. Walbridge. 2001. Phosphorus availability in an artificially flooded southeastern floodplain forest soil. Soil Science Society of America Journal 65(4): 1293-1302. doi: 10.2136/sssaj2001.6541293x.

How to Cite

APA

Quinto Mosquera, H. and Moreno Hurtado, F. (2016). Precipitation effects on soil characteristics in tropical rain forests of the Chocó biogeographical region. Revista Facultad Nacional de Agronomía Medellín, 69(1), 7813–7823. https://doi.org/10.15446/rfna.v69n1.54749

ACM

[1]
Quinto Mosquera, H. and Moreno Hurtado, F. 2016. Precipitation effects on soil characteristics in tropical rain forests of the Chocó biogeographical region. Revista Facultad Nacional de Agronomía Medellín. 69, 1 (Jan. 2016), 7813–7823. DOI:https://doi.org/10.15446/rfna.v69n1.54749.

ACS

(1)
Quinto Mosquera, H.; Moreno Hurtado, F. Precipitation effects on soil characteristics in tropical rain forests of the Chocó biogeographical region. Rev. Fac. Nac. Agron. Medellín 2016, 69, 7813-7823.

ABNT

QUINTO MOSQUERA, H.; MORENO HURTADO, F. Precipitation effects on soil characteristics in tropical rain forests of the Chocó biogeographical region. Revista Facultad Nacional de Agronomía Medellín, [S. l.], v. 69, n. 1, p. 7813–7823, 2016. DOI: 10.15446/rfna.v69n1.54749. Disponível em: https://revistas.unal.edu.co/index.php/refame/article/view/54749. Acesso em: 18 apr. 2024.

Chicago

Quinto Mosquera, Harley, and Flavio Moreno Hurtado. 2016. “Precipitation effects on soil characteristics in tropical rain forests of the Chocó biogeographical region”. Revista Facultad Nacional De Agronomía Medellín 69 (1):7813-23. https://doi.org/10.15446/rfna.v69n1.54749.

Harvard

Quinto Mosquera, H. and Moreno Hurtado, F. (2016) “Precipitation effects on soil characteristics in tropical rain forests of the Chocó biogeographical region”, Revista Facultad Nacional de Agronomía Medellín, 69(1), pp. 7813–7823. doi: 10.15446/rfna.v69n1.54749.

IEEE

[1]
H. Quinto Mosquera and F. Moreno Hurtado, “Precipitation effects on soil characteristics in tropical rain forests of the Chocó biogeographical region”, Rev. Fac. Nac. Agron. Medellín, vol. 69, no. 1, pp. 7813–7823, Jan. 2016.

MLA

Quinto Mosquera, H., and F. Moreno Hurtado. “Precipitation effects on soil characteristics in tropical rain forests of the Chocó biogeographical region”. Revista Facultad Nacional de Agronomía Medellín, vol. 69, no. 1, Jan. 2016, pp. 7813-2, doi:10.15446/rfna.v69n1.54749.

Turabian

Quinto Mosquera, Harley, and Flavio Moreno Hurtado. “Precipitation effects on soil characteristics in tropical rain forests of the Chocó biogeographical region”. Revista Facultad Nacional de Agronomía Medellín 69, no. 1 (January 1, 2016): 7813–7823. Accessed April 18, 2024. https://revistas.unal.edu.co/index.php/refame/article/view/54749.

Vancouver

1.
Quinto Mosquera H, Moreno Hurtado F. Precipitation effects on soil characteristics in tropical rain forests of the Chocó biogeographical region. Rev. Fac. Nac. Agron. Medellín [Internet]. 2016 Jan. 1 [cited 2024 Apr. 18];69(1):7813-2. Available from: https://revistas.unal.edu.co/index.php/refame/article/view/54749

Download Citation

CrossRef Cited-by

CrossRef citations11

1. A.M. Cárdenas, P. Gallardo, J.R. Carbonero-Pacheco, M. Trillo. (2020). Response of the subterranean termite Reticulitermes grassei Clément (Isoptera: Rhinotermitidae) to pH of substrate. Pedobiologia, 78, p.150608. https://doi.org/10.1016/j.pedobi.2019.150608.

2. Harley Quinto Mosquera, Sandra Milena Ibarguen Mosquera, María Fernanda Cárdenas Victoria. (2024). Efectos de la fertilización sobre la producción de hojarasca de bosques post-minería del Chocó Biogeográfico. Colombia forestal, 27(1), p.e20809. https://doi.org/10.14483/2256201X.20809.

3. Harley Quinto Mosquera, Flavio H. Moreno-Hurtado. (2022). Influencia de los nutrientes del suelo sobre el crecimiento arbóreo en bosques del Pacífico colombiano. Colombia forestal, 25(2), p.30. https://doi.org/10.14483/2256201X.18232.

4. Harley Quinto Mosquera, Hamleth Valois Cuesta, David Pérez Abadía. (2024). Influence of soil nutrients on net primary productivity in post-mining forests in the Colombian Pacific. Revista Brasileira de Ciência do Solo, 48 https://doi.org/10.36783/18069657rbcs20230053.

5. Kai Fang, Dan Kou, Guanqin Wang, Leiyi Chen, Jinzhi Ding, Fei Li, Guibiao Yang, Shuqi Qin, Li Liu, Qiwen Zhang, Yuanhe Yang. (2017). Decreased Soil Cation Exchange Capacity Across Northern China's Grasslands Over the Last Three Decades. Journal of Geophysical Research: Biogeosciences, 122(11), p.3088. https://doi.org/10.1002/2017JG003968.

6. Hernando José Bolívar-Anillo, Ezzanad Abdellah, Gesiane da Silva Lima, Inmaculada Izquierdo-Bueno, Javier Moraga, Gabriel Franco dos Santos. (2021). Neotropical Endophytic Fungi. , p.93. https://doi.org/10.1007/978-3-030-53506-3_5.

7. Mario F. Garcés-Restrepo, John L. Carr, Alan Giraldo. (2019). Long-Term Variation in Survival of A Neotropical Freshwater Turtle: Habitat and Climatic Influences. Diversity, 11(6), p.97. https://doi.org/10.3390/d11060097.

8. Harley Quinto Mosquera, Yeison Rivas Urrutia, Natalia Palacios Murillo. (2023). Fine root biomass and its relationship with the soil in degraded areas by mining in biogeographic Chocó. Revista Facultad Nacional de Agronomía Medellín, 76(2), p.10403. https://doi.org/10.15446/rfnam.v76n2.102403.

9. Ovung Etsoshan Yinga, Kewat Sanjay Kumar, Manpoong Chowlani, Shri Kant Tripathi, Vinod Prasad Khanduri, Sudhir Kumar Singh. (2022). Influence of land-use pattern on soil quality in a steeply sloped tropical mountainous region, India. Archives of Agronomy and Soil Science, 68(6), p.852. https://doi.org/10.1080/03650340.2020.1858478.

10. Sandra Arifin Aziz. (2022). The Food Security, Biodiversity, and Climate Nexus. , p.125. https://doi.org/10.1007/978-3-031-12586-7_7.

11. Abayomi G. Osotuyi, Muraina Z. Mohammed, Isaac R. Ajayi, Adebayo O. Salako. (2021). Assessment of geoelectric properties and localized geology as indicators on cocoa (Theobroma cacao) yield in a part of southwestern Nigeria. Heliyon, 7(12), p.e08516. https://doi.org/10.1016/j.heliyon.2021.e08516.

Dimensions

PlumX

Article abstract page views

630

Downloads

Download data is not yet available.