Published

2007-05-01

A study of poly(vinyl alcohol) thermal degradation by thermogravimetry and differential thermogravimetry

Estudio de la degradación térmica de poli(alcohol vinílico) mediante termogravimetría y termogravimetría diferencial

DOI:

https://doi.org/10.15446/ing.investig.v27n2.14837

Keywords:

thermal degradation, PVA, thermogravimetry, polymer degradation (en)
degradación térmica, PVA, termogravimetría, degradación de polímeros (es)

Authors

  • Julián Esteban Barrera Universidad Nacional de Colombia
  • John Alexander Rodríguez Universidad Nacional de Colombia
  • Jairo Ernesto Perilla Universidad Nacional de Colombia
  • Néstor Ariel Algecira Enciso Universidad Nacional de Colombia

The thermal degradation of poly(vinyl alcohol) (PVA) having different degrees of hydrolysis and molecular weights was studied by thermogravimetry (TGA) and differential thermogravimetry (DTGA). Four degradation events were identified whose intensity was related to the degree of hydrolysis. It was verified that the solid-state degradation mechanism for high hydrolysis degrees corresponded to eliminating water-forming side groups in stoichiometric amounts. The presence of acetate groups and lower melting points delayed the polymer’s thermal decomposition at lower hydrolysis degrees. There was no direct correlation in these samples between weight-loss during the first degradation event and the stoichiometric quantities which would be produced by eliminating the side groups. Reaction order and energy activation value qualitative coincidence was found by evaluating experimental data by using Freeman-Carroll and Friedman kinetic models.

En esta investigación se estudió la degradación térmica de poli(alcohol vinílico) (PVA) con diferentes grados de hidrólisis y pesos moleculares, mediante termogravimetría (TGA) y termogravimetría diferencial (DTG). Se identificaron cuatro eventos de degradación cuya intensidad depende del grado de hidrólisis y peso molecular del PVA. Se verificó que para altos grados de hidrólisis el mecanismo de degradación en estado sólido corresponde al desprendimiento de grupos laterales formando agua en cantidades de orden estequiométrico. Para grados de hidrólisis menores, la interacción con los grupos acetato y la menor temperatura de fusión retrasa la descomposición del polímero. En estas muestras no hubo correlación directa entre la pérdida de peso en el primer evento degradativo, y las cantidades estequiométricas que se generarían por desprendimiento de grupos laterales. Se encontró una coincidencia cualitativa entre los órdenes de reacción y las energías de activación al evaluar los datos experimentales mediante los métodos de Freeman-Carroll y Friedman.

References

Ballistreri, A., Foti, S., Montaudo, G. and Scamporrino E., Evolution of aromatic compounds in the thermal decomposition of vinyl polymers., Journal of Polymer Science: Polymer Chemistry Edition, Vol. 18, 1980, pp. 1147-1153 DOI: https://doi.org/10.1002/pol.1980.170180401

Holland, B.J. and Hay, J.N., The thermal degradation of poly(vinyl alcohol)., Polymer, Vol. 42, 2001, pp. 6775- 6783 DOI: https://doi.org/10.1016/S0032-3861(01)00166-5

Holland, B.J. and Hay, J.N., The thermal degradation of poly(vinyl acetate) measured by thermal Analysis-Fourier transform infrared spectroscopy., Polymer, Vol. 43, 2002, pp. 2207-2211 DOI: https://doi.org/10.1016/S0032-3861(02)00038-1

McNeill, I.C., Thermal degradation mechanism of some addition polymers and copolymers., Journal of Analytical and Applied Pyrolysis, Vol. 40-41, 1997, pp. 21-41 DOI: https://doi.org/10.1016/S0165-2370(97)00006-5

Park, J.W., Oh, S.C., Lee, H.P., Kim, H.T. and Yoo, K.O., Kinetic analysis of thermal decomposition of polymer using a dynamic model., Korean Journal of Chemical Engineering, Vol. 17, No. 5, 2000, pp. 489-496 DOI: https://doi.org/10.1007/BF02707154

Somani, P.R., Marimuthu, R., Viswanath, A.K. y Radhakrishnan, S., Thermal degradation properties of solid polymer electrolyte (poly(vinyl alcohol)+phosphoric acid)/ methylene blue composites., Polymer Degradation and Stability, Vol. 79, 2003, pp. 77-83 DOI: https://doi.org/10.1016/S0141-3910(02)00240-9

How to Cite

APA

Esteban Barrera, J., Alexander Rodríguez, J., Ernesto Perilla, J. and Algecira Enciso, N. A. (2007). A study of poly(vinyl alcohol) thermal degradation by thermogravimetry and differential thermogravimetry. Ingeniería e Investigación, 27(2), 100–105. https://doi.org/10.15446/ing.investig.v27n2.14837

ACM

[1]
Esteban Barrera, J., Alexander Rodríguez, J., Ernesto Perilla, J. and Algecira Enciso, N.A. 2007. A study of poly(vinyl alcohol) thermal degradation by thermogravimetry and differential thermogravimetry. Ingeniería e Investigación. 27, 2 (May 2007), 100–105. DOI:https://doi.org/10.15446/ing.investig.v27n2.14837.

ACS

(1)
Esteban Barrera, J.; Alexander Rodríguez, J.; Ernesto Perilla, J.; Algecira Enciso, N. A. A study of poly(vinyl alcohol) thermal degradation by thermogravimetry and differential thermogravimetry. Ing. Inv. 2007, 27, 100-105.

ABNT

ESTEBAN BARRERA, J.; ALEXANDER RODRÍGUEZ, J.; ERNESTO PERILLA, J.; ALGECIRA ENCISO, N. A. A study of poly(vinyl alcohol) thermal degradation by thermogravimetry and differential thermogravimetry. Ingeniería e Investigación, [S. l.], v. 27, n. 2, p. 100–105, 2007. DOI: 10.15446/ing.investig.v27n2.14837. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/14837. Acesso em: 29 mar. 2024.

Chicago

Esteban Barrera, Julián, John Alexander Rodríguez, Jairo Ernesto Perilla, and Néstor Ariel Algecira Enciso. 2007. “A study of poly(vinyl alcohol) thermal degradation by thermogravimetry and differential thermogravimetry”. Ingeniería E Investigación 27 (2):100-105. https://doi.org/10.15446/ing.investig.v27n2.14837.

Harvard

Esteban Barrera, J., Alexander Rodríguez, J., Ernesto Perilla, J. and Algecira Enciso, N. A. (2007) “A study of poly(vinyl alcohol) thermal degradation by thermogravimetry and differential thermogravimetry”, Ingeniería e Investigación, 27(2), pp. 100–105. doi: 10.15446/ing.investig.v27n2.14837.

IEEE

[1]
J. Esteban Barrera, J. Alexander Rodríguez, J. Ernesto Perilla, and N. A. Algecira Enciso, “A study of poly(vinyl alcohol) thermal degradation by thermogravimetry and differential thermogravimetry”, Ing. Inv., vol. 27, no. 2, pp. 100–105, May 2007.

MLA

Esteban Barrera, J., J. Alexander Rodríguez, J. Ernesto Perilla, and N. A. Algecira Enciso. “A study of poly(vinyl alcohol) thermal degradation by thermogravimetry and differential thermogravimetry”. Ingeniería e Investigación, vol. 27, no. 2, May 2007, pp. 100-5, doi:10.15446/ing.investig.v27n2.14837.

Turabian

Esteban Barrera, Julián, John Alexander Rodríguez, Jairo Ernesto Perilla, and Néstor Ariel Algecira Enciso. “A study of poly(vinyl alcohol) thermal degradation by thermogravimetry and differential thermogravimetry”. Ingeniería e Investigación 27, no. 2 (May 1, 2007): 100–105. Accessed March 29, 2024. https://revistas.unal.edu.co/index.php/ingeinv/article/view/14837.

Vancouver

1.
Esteban Barrera J, Alexander Rodríguez J, Ernesto Perilla J, Algecira Enciso NA. A study of poly(vinyl alcohol) thermal degradation by thermogravimetry and differential thermogravimetry. Ing. Inv. [Internet]. 2007 May 1 [cited 2024 Mar. 29];27(2):100-5. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/14837

Download Citation

CrossRef Cited-by

CrossRef citations12

1. Mario Gutierrez-Villarreal, Helia Bibiana León-Molina, Ricardo Acosta. (2017). Kinetic study on the thermal degradation of ethylene–norbornene copolymers under the effect of Fe and Mn stearates. Reaction Kinetics, Mechanisms and Catalysis, 122(2), p.995. https://doi.org/10.1007/s11144-017-1256-1.

2. Faten Mannai, Hanadi Elhleli, Alain Dufresne, Elimame Elaloui, Younes Moussaoui. (2020). Opuntia (Cactaceae) Fibrous Network-reinforced Composites: Thermal, Viscoelastic, Interfacial Adhesion and Biodegradation Behavior. Fibers and Polymers, 21(10), p.2353. https://doi.org/10.1007/s12221-020-9675-4.

3. Johana Andrade, Chelo González-Martínez, Amparo Chiralt. (2021). Effect of phenolic acids on the properties of films from Poly (vinyl alcohol) of different molecular characteristics. Food Packaging and Shelf Life, 29, p.100711. https://doi.org/10.1016/j.fpsl.2021.100711.

4. Alejandro Aragón-Gutiérrez, Raquel Heras-Mozos, Miriam Gallur, Daniel López, Rafael Gavara, Pilar Hernández-Muñoz. (2021). Hot-Melt-Extruded Active Films Prepared from EVOH/Trans-Cinnamaldehyde Blends Intended for Food Packaging Applications. Foods, 10(7), p.1591. https://doi.org/10.3390/foods10071591.

5. Andres Bernal, Ivo Kuritka, Vera Kasparkova, Petr Saha. (2013). The effect of microwave irradiation on poly(vinyl alcohol) dissolved in ethylene glycol. Journal of Applied Polymer Science, 128(1), p.175. https://doi.org/10.1002/app.38133.

6. Vanessa E. Sánchez-Moreno, Christian Sandoval-Pauker, Miguel Aldas, Valerian Ciobotă, Maribel Luna, Paul Vargas Jentzsch, Florinella Muñoz Bisesti. (2020). Synthesis of inulin hydrogels by electron beam irradiation: physical, vibrational spectroscopic and thermal characterization and arsenic removal as a possible application. Journal of Polymer Research, 27(7) https://doi.org/10.1007/s10965-020-02159-5.

7. Johana Andrade, Chelo González-Martínez, Amparo Chiralt. (2022). Physical and active properties of poly (vinyl alcohol) films with phenolic acids as affected by the processing method. Food Packaging and Shelf Life, 33, p.100855. https://doi.org/10.1016/j.fpsl.2022.100855.

8. Alejandro Aragón-Gutiérrez, Raquel Heras-Mozos, Antonio Montesinos, Miriam Gallur, Daniel López, Rafael Gavara, Pilar Hernández-Muñoz. (2022). Pilot-Scale Processing and Functional Properties of Antifungal EVOH-Based Films Containing Methyl Anthranilate Intended for Food Packaging Applications. Polymers, 14(16), p.3405. https://doi.org/10.3390/polym14163405.

9. Yun Dou, Shoujuan Wang, Magdi E. Gibril, Fangong Kong. (2024). Electrospun of polyvinyl alcohol composite hydrogel nanofibers prepared by in-situ polymerization: A novel approach to fabricate hydrogel nanofiber membrane for lithium-ion batteries. Chemical Engineering Journal, 481, p.148435. https://doi.org/10.1016/j.cej.2023.148435.

10. Siti Nur Fatin Zuikafly, Harith Ahmad, Mohd Faizal Ismail, Mohd Azizi Abdul Rahman, Wira Jazair Yahya, Nurulakmar Abu Husain, Khairil Anwar Abu Kassim, Hafizal Yahaya, Fauzan Ahmad. (2023). Dual Regime Mode-Locked and Q-Switched Erbium-Doped Fiber Laser by Employing Graphene Filament–Chitin Film-Based Passive Saturable Absorber. Micromachines, 14(5), p.1048. https://doi.org/10.3390/mi14051048.

11. A. Cano, M. Chafer, A. Chiralt, C. Gonzalez-Martinez. (2017). Handbook of Composites from Renewable Materials. , p.311. https://doi.org/10.1002/9781119441632.ch74.

12. Karla F. García-Verdugo, Andya J. Ramírez-Irigoyen, Mónica Castillo-Ortega, Dora E. Rodríguez-Félix, Jesús M. Quiroz-Castillo, Judith Tánori-Córdova, Francisco Rodríguez-Félix, Antonio Ledezma-Pérez, Teresa del Castillo-Castro. (2022). A pH/Temperature-Sensitive s-IPN Based on Poly(vinyl alcohol), Poly(vinyl methyl ether-alt-maleic acid) and Poly(vinyl methyl ether) Prepared by Autoclaving. Macromolecular Research, 30(6), p.353. https://doi.org/10.1007/s13233-022-0044-6.

Dimensions

PlumX

Article abstract page views

476

Downloads

Download data is not yet available.

Most read articles by the same author(s)