Published

2016-07-01

Influence of pressure, coal structure and permeability on CBM well productivity at various burial depths in South Yanchuan Block, China

DOI:

https://doi.org/10.15446/esrj.v20n3.58000

Keywords:

Burial depth, CBM productivities, reservoir pressure, closure pressure, permeability, explotación en profundidad, producción de gas metano asociado a carbón, presión de depósito, presión de cierre, permeabilidad. (en)

Downloads

Authors

  • Teng Li China University of Mining and Technology
  • Caifang Wu China University of Mining and Technology

With a burial depth of 1000 m as the demarcation, the coal reservoir in South Yanchuan Block, China is divided into deep reservoir and shallow reservoir regions. A combination of coalbed methane well production data, well logging interpretation, coalbed methane numerical simulations and reservoir properties were used to research various production characteristics at different depths. The results indicate that coal thickness and gas content are not key factors that influence methane production. The shallow reservoir is located in a tension zone, while the deep reservoir is located in both a transformation zone and a compression zone. Although the reservoir and closure pressures increase with the burial depth, the pressures fluctuate in the deep reservoir, especially in the transformation zone. This fluctuation influences the opened degree of the fractures in the reservoir. The effective stress is lower in the deep reservoir than in the shallow reservoir, leading to higher permeability in the deep reservoir. This difference in effective stress is the key factor that influences the methane production. The combination of coal thickness and gas content also significantly influenced the methane production. Influenced by the reservoir and closure pressures, the Type III coal in the shallow reservoir is more developed, while the deep reservoir contained more developed Type I and Type II coal. The permeability increases exponentially with increasing thickness of Type I and Type II coal, which determines the high reservoir permeability in the deep reservoir. The development of Type III coal leads to the poor reservoir hydraulic fracturing effect. However, a reservoir with thick Type I and Type II coal can have a positive effect.

 

Influencia de la presión, la estructura del carbón y su permeabilidad sobre la productividad de gas metano de carbón en profundidades de enterramiento del bloque Yanchuan Sur, China


Resumen

Con una profundidad de enterramiento de 1000 metros, el yacimiento de carbón del bloque Yanchuan Sur, en China, se divide en dos: el depósito profundo y el depósito superficial. Este trabajo combina los datos de la información de producción de gas metano asociado carbón, la interpretación de registros de pozo, las simulaciones numéricas de metano asociado a carbón y las propiedades del reservorio para encontrar las características de producción a diferentes profundidades. Los resultados indican que el espesor del carbón y el contenido de gas no son factores que alcancen a influir en la producción de metano. El depósito superficial se encuentra en una zona de tensión, mientras el depósito profundo está ubicado en una región tanto de transformación como de compresión. Aunque el reservorio y la presión de cierre se incrementan con la profundidad de enterramiento, las presiones fluctúan en el depósito profundo, especialmente en la zona de transformación. Esta fluctuación influye en el grado de apertura de las fracturas en el depósito. La tensión efectiva es más baja en el depósito profundo, lo que significa una mayor permeabilidad. La diferencia en la tensión efectiva es el factor clave que incide en la producción de metano. Afectado por las presiones de cierre y del yacimiento, el carbón tipo III en el depósito superficial está más desarrollado, mientras que el depósito profundo contiene carbón tipo I y tipo II más desarrollado. La permeabilidad se incrementa exponencialmente con el incremento del espesor en el carbón tipo I y tipo II, lo que determina la alta porosidad en el depósito profundo. El desarrollo de carbón tipo III lleva a un pobre efecto de la fractura hidráulica en el depósito. Sin embargo, un depósito con carbón tipo I y tipo II espeso podría tener un efecto positivo.

References

Advanced Resources International (2005). Users Manual COMET3 Version 2.0. Advanced Resources International, Washington, DC, USA.

Cai, Y., Liu, D., Zhang, K., Elsworth, D. Yao, Y. & Tang, D. (2014). Preliminary evaluation of gas content of the No. 2 coal seam in the Yanchuannan area, southeast Ordos Basin, China. Journal of Petroleum Science and Engineering, 122, 675-689.

Chen, Z., Liu, J., Elsworth, D., Connell, L. D. & Pan, Z. (2010). Impact of CO2 injection and differential deformation on CO2 injectivity under in situ stress conditions. International Journal of Coal Geology, 81(2), 97-108.

Durucan, S. & Edwards, J. S. (1986). The effects of stress and fracturing on permeability of coal. Mining Science and Technology, 3(3), 205-216.

Fu, X., Qin, Y., Wang, G. G. X. & Rudolph, V. (2009). Evaluation of coal structural and permeability with the aid of geophysical logging technology. Fuel, 88, 2278-2285.

Gentzis, T., Deisman, N. & Chalaturnyk, R. J. (2009). Effect of drilling fluids on coal permeability: Impact on horizontal wellbore stability. International Journal of Coal Geology, 78(3), 177-191.

Gray, I. (1987). Reservoir engineering in coal seams: part 1 - The physical process of gas storage and movement in coal seams. SPE Reservior Engineering, 2, no. 1, 28-34.

Kaiser, W. R., Hamilton, D. S., Scott, A. R., Tyler, R. & Finley, R. J. (1994). Geological and hydrological controls on the producibility of coalbed methane. Journal of the Geological Society, 151, 417-420.

Karacan, C. O. (2009). Elastic and shear moduli of coal measure rocks derived from basic well logs using fractal statistics and radial basis functions. International Journal of Rock Mechanics and Mining Sciences, 46(8), 1281-1295.

Karacan, C. O., Ulery, J. P. & Goodman, G. V. R. (2008). A numerical evaluation on the effects of impermeable faults on degasification efficiency and methane emissions during underground coal mining. International Journal of Coal Geology, 75(4), 195-203.

Laubach, S. E., Marrett, R. A., Olson, J. E. & Scott, A. R. (1998). Characteristics and origins of coal cleat: A review. International Journal of Coal Geology, 35(1-4), 175-207.

Lei, B., Qin, Y., Gao, D., Fu, X., Wang, G. G. X., Zou, M. & Shen, J. (2012). Vertical diversity of coalbed methane content and its geological controls in the Qingshan syncline, western Guizhou Province, China. Energy Exploration & Exploitation, 30(1), 43-58.

Li, H. (2001). Major and minor structural features of a bedding shear zone along a coal seam and related gas outburst, Pingdingshan coalfield, northern China. International Journal of Coal Geology, 47(2), 101-113.

Li, H., Ogawa, Y. & Shimada, S. (2003). Mechanism of methane flow through sheared coals and its role on methane recovery. Fuel, 82(10), 1271-1279.

Li, J., Liu, D., Yao, Y., Cai, Y. & Qin, Y. (2011). Evaluation of the reservoir permeability of anthracite coals by geophysical logging data. International Journal of Coal Geology, 87, no. 2, 121-127.

Li, T., Wu, C. & Liu, Q. (2015). Characteristics of coal fractures and the influence of coal facies on coalbed methane productivity in the South Yanchuan Block, China. Journal of Natural Gas Science and Engineering, 22, 625-632.

Liu, J., Chen, Z., Elsworth, D., Miao, X. & Mao, X. (2010). Evaluation of stress-controlled coal swelling processes. International Journal of Coal Geology, 83(4), 446-455.

Liu, S. & Harpalani, S. (2013). Permeability prediction of coalbed methane reservoirs during primary depletion. International Journal of Coal Geology, 113, 1-10.

Lv, Y., Tang, D., Xu, H. & Luo, H. (2012). Production characteristics and the key factors in high-rank coalbed methane fields: A case study on the Fangzhuang Block, Southern Qinshui Basin, China. International Journal of Coal Geology, 96-97, 93-108.

Ma, Q., Harpalani, S. & Liu, S. (2011). A simplified permeability model for coalbed methane reservoirs based on matchstick strain and constant volume theory. International Journal of Coal Geology, 85(1), 43-48.

Mazumder, S., Scott, M. & Jiang, J. (2012). Permeability increase in Bowen Basin coal as a result of matrix shrinkage during primary depletion. International Journal of Coal Geology, 96-97, 109-119.

Meng, Z. & Li, G. (2013). Experimental research on the permeability of high-rank coal under a varying stress and its influencing factors. Engineering Geology, 162, 108-117.

Palmer, I. (2009). Permeability changes in coal: Analytical modeling. International Journal of Coal Geology, 77(1-2), 119-126.

Pashin, J. C. & Groshong, Jr., R. H. (1998). Structural control of coalbed methane production in Alabama. International Journal of Coal Geology, 38, no. 1-2, 89-113.

Peng, Y., Liu, J., Zhu, W., Pan, Z. & Connell, L. (2014). Benchmark assessment of coal permeability models on the accuracy of permeability prediction. Fuel, 132, 194-203.

Perera, M. S. A. & Ranjith, P. G. (2012). Carbon dioxide sequestration effects on coal’s hydro-mechanical properties. International Journal of Energy Research, 36(10), 1015-1031.

Perera, M. S. A., Ranjith, P. G. & Choi, S. K. (2013a). Coal cleat permeability for gas movement under triaxial, non-zero lateral strain condition: A theoretical and experimental study. Fuel, 109, 389-399.

Perera, M. S. A., Ranjith, P. G., Choi, S. K. & Bouazza, A. (2013c). A parametric study of coal mass and cap rock behavior and carbon dioxide flow during and after carbon dioxide injection. Fuel, 106, 129-138.

Perera, M. S. A., Ranjith, P. G. & Viete, D. R. (2013b). Effects of gaseous and super-critical carbon dioxide saturation on the mechanical properties of bituminous coal from the Southern Sydney Basin. Applied Energy, 110, 73-81.

Qu, H., Liu, J., Pan, Z. & Connell, L. (2014). Impact of matrix swelling area propagation on the evolution of coal permeability under coupled multiple processes. Journal of Natural Gas Science and Engineering, 18, 451-466.

Somerton, W. H., Soylemezoglu, I. M. & Dudley, R. C. (1975). Effect of stress on permeability of coal. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 12(5-6), 129-145.

St., George, J. D. & Barakat, M. A. (2001). The change in effective stress with shrinkage from gas desorption in coal. International Journal of Coal Geology, 45(2-3), 105-113.

Tao, S., Wang, Y., Tang, D., Xu, H., Lv, Y., He, W. & Li, Y. (2012). Dynamic variation effects of coal permeability during the coalbed methane development process in the Qinshui Basin, China. International Journal of Coal Geology, 93, 16-22.

Thararoop, P., Karpyn, Z. T. & Ertekin, T. (2012). Development of a multimechanistic, dual-porosity, dual-permeability, numerical flow model for coalbed methane reservoirs. Journal of Natural Gas

Science and Engineering, 8, 121-131.

Viete, D. R. & Ranjith, P. G. (2006). The effect of CO2 on the geomechanical and permeability behaviour of brown coal: Implications for coal seam CO2 sequestration. International Journal of Coal Geology, 66(3), 204-216.

Wu, C. F., Qin, Y. & Fu, X. H. (2007). Stratum energy of coal-bed gas reservoir and their control on the coal-bed gas reservoir formation. Science in China Series D: Earth Sciences, 50(9), 1319-1326.

Wu, C. F., Qin, Y. & Zhou, L. G. (2014). Effective migration system of coalbed methane reservoirs in the southern Qinshui Basin. Science China Earth Sciences, 57(12), 2978-2984.

Wu, Q. (2012). Study on in-situ stress condition of coal reservoir and effects on CBM well production in Yanchuannan block, Ordos Basin. Ph.D. Thesis, Department of Geology, Northwest University, Xi’an, China.

Yan, T., Yao, Y. & Liu, D. (2015). Critical tectonic events and their geological controls on gas generation, migration, and accumulation in the Weibei coalbed methane field, southeast Ordos basin, Journal of Natural Gas Science and Engineering. 27, 1367-1380.

Yao, Y., Liu, D., Tang, D., Tang, S., Che, Y. & Huang, W. (2009a). Preliminary evaluation of the coalbed methane production potential and its geological controls in the Weibei Coalfield, Southern Ordos Basin, China. International Journal of Coal Geology, 78(1), 1-15.

Yao, Y., Liu, D., Tang, D., Tang, S., Huang, W., Liu, Z. & Che, Y. (2009b). Fractal characterization of seepage-pores of coals from China: An investigation on permeability of coals. Computers & Geosciences, 35(6), 1159-1166.

How to Cite

APA

Li, T. and Wu, C. (2016). Influence of pressure, coal structure and permeability on CBM well productivity at various burial depths in South Yanchuan Block, China. Earth Sciences Research Journal, 20(3), D1-D9. https://doi.org/10.15446/esrj.v20n3.58000

ACM

[1]
Li, T. and Wu, C. 2016. Influence of pressure, coal structure and permeability on CBM well productivity at various burial depths in South Yanchuan Block, China. Earth Sciences Research Journal. 20, 3 (Jul. 2016), D1-D9. DOI:https://doi.org/10.15446/esrj.v20n3.58000.

ACS

(1)
Li, T.; Wu, C. Influence of pressure, coal structure and permeability on CBM well productivity at various burial depths in South Yanchuan Block, China. Earth sci. res. j. 2016, 20, D1-D9.

ABNT

LI, T.; WU, C. Influence of pressure, coal structure and permeability on CBM well productivity at various burial depths in South Yanchuan Block, China. Earth Sciences Research Journal, [S. l.], v. 20, n. 3, p. D1-D9, 2016. DOI: 10.15446/esrj.v20n3.58000. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/58000. Acesso em: 18 apr. 2024.

Chicago

Li, Teng, and Caifang Wu. 2016. “Influence of pressure, coal structure and permeability on CBM well productivity at various burial depths in South Yanchuan Block, China”. Earth Sciences Research Journal 20 (3):D1-D9. https://doi.org/10.15446/esrj.v20n3.58000.

Harvard

Li, T. and Wu, C. (2016) “Influence of pressure, coal structure and permeability on CBM well productivity at various burial depths in South Yanchuan Block, China”, Earth Sciences Research Journal, 20(3), pp. D1-D9. doi: 10.15446/esrj.v20n3.58000.

IEEE

[1]
T. Li and C. Wu, “Influence of pressure, coal structure and permeability on CBM well productivity at various burial depths in South Yanchuan Block, China”, Earth sci. res. j., vol. 20, no. 3, pp. D1-D9, Jul. 2016.

MLA

Li, T., and C. Wu. “Influence of pressure, coal structure and permeability on CBM well productivity at various burial depths in South Yanchuan Block, China”. Earth Sciences Research Journal, vol. 20, no. 3, July 2016, pp. D1-D9, doi:10.15446/esrj.v20n3.58000.

Turabian

Li, Teng, and Caifang Wu. “Influence of pressure, coal structure and permeability on CBM well productivity at various burial depths in South Yanchuan Block, China”. Earth Sciences Research Journal 20, no. 3 (July 1, 2016): D1-D9. Accessed April 18, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/58000.

Vancouver

1.
Li T, Wu C. Influence of pressure, coal structure and permeability on CBM well productivity at various burial depths in South Yanchuan Block, China. Earth sci. res. j. [Internet]. 2016 Jul. 1 [cited 2024 Apr. 18];20(3):D1-D9. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/58000

Download Citation

CrossRef Cited-by

CrossRef citations5

1. Ziwei Wang, Yong Qin, Teng Li, Xiaoyang Zhang. (2021). A numerical investigation of gas flow behavior in two-layered coal seams considering interlayer interference and heterogeneity. International Journal of Mining Science and Technology, 31(4), p.699. https://doi.org/10.1016/j.ijmst.2021.05.003.

2. Yunlan He, Xikai Wang, Hongjie Sun, Zhenguo Xing, Shan Chong, Dongjing Xu, Feisheng Feng. (2019). Coal Seam Roof: Lithology and Influence on the Enrichment of Coalbed Methane. Earth Sciences Research Journal, 23(4), p.359. https://doi.org/10.15446/esrj.v23n4.84394.

3. Yutong Fu, Qinghe Niu, Bin Cui, Dan Huang, Xinhan Xie. (2022). Evaluation of deep high-rank coal seam gas content and favorable area division based on GIS: A case study of the South Yanchuan block in Ordos Basin. Energy Exploration & Exploitation, 40(4), p.1151. https://doi.org/10.1177/01445987221081212.

4. Wan Li, Tongjun Chen, Xiong Song, Tianqi Gong, Mengyue Liu. (2020). Reconstruction of critical coalbed methane logs with principal component regression model: A case study. Energy Exploration & Exploitation, 38(4), p.1178. https://doi.org/10.1177/0144598720909470.

5. Chuantao Wang, Dongmin Ma, Qian He, Qian Li, Pengcheng Liu. (2017). Optimization Design of Fracturing Parameters for Coalbed Methane Wells in Dafosi Mine Field. Journal of Power and Energy Engineering, 05(09), p.121. https://doi.org/10.4236/jpee.2017.59010.

Dimensions

PlumX

Article abstract page views

450

Downloads

Download data is not yet available.