Publicado

2014-01-01

LIVERWORTS OF PEATLANDS AND TEPUALIA STIPULARIS (HOOK. & ARN.) GRISEB. SWAMP FORESTS IN ISLA GRANDE DE CHILOÉ (CHILE): KEY FOR IDENTIFICATION

DOI:

https://doi.org/10.15446/caldasia.v36n1.43889

Palabras clave:

Bogs, Southern South America, bryophytes, hepatics, key (es)

Descargas

Autores/as

  • Carolina León Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O’Higgins
  • Gisela Oliván
Bryophytes play a key role in peatland ecosystems; they participate directly in the constitution of peat and in the maintenance of these ecosystems. Nevertheless, the knowledge of this group is highly limited, specifically for liverworts. Therefore, we present a key to determine liverworts, restricted to peatland habitats and swamp forests of Tepualia stipularis (Hook. & Arn.) Griseb. of Isla Grande de Chiloé (Chile). This key includes the main reported taxa for these ecosystems and it is based on vegetative characters to facilitate identification. Fifty-two species and 28 genera are included. These taxa belong to 19 families. The best represented families are: Lepidoziaceae, Lophocoleaceae, Plagiochilaceae, and Aneuraceae. Chiloscyphus, Plagiochila, and Riccardia are the richest genera. A separate key for each group with similar characters and alphabetical taxa list are provided

LIVERWORTS OF PEATLANDS AND TEPUALIA STIPULARIS (HOOK. & ARN.) GRISEB. SWAMP FORESTS IN ISLA GRANDE DE CHILOÉ (CHILE): KEY FOR IDENTIFICATION

Hepáticas de las turberas y bosques pantanosos de Tepualia stipularis (Hook. & Arn.) Griseb. de la Isla Grande de Chiloé (Chile): clave para la identificación

CAROLINA A. LEÓN
GISELA OLIVÁN

Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O’Higgins, Fábrica 1990, Santiago, Chile. carolina.leon@ubo.cl: Correspondence author

Departamento de Biología Vegetal I, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, E-28040 Madrid. golivan@ucm.es

ABSTRACT

Bryophytes play a key role in peatland ecosystems; they participate directly in the constitution of peat and in the maintenance of these ecosystems. Nevertheless, the knowledge of this group is highly limited, specifically for liverworts. Therefore, we present a key to determine liverworts, restricted to peatland habitats and swamp forests of Tepualia stipularis (Hook. & Arn.) Griseb. of Isla Grande de Chiloé ( Chile ). This key includes the main reported taxa for these ecosystems and it is based on vegetative characters to facilitate identification. Fifty-two species and 28 genera are included. These taxa belong to 19 families. The best represented families are: Lepidoziaceae, Lophocoleaceae, Plagiochilaceae, and Aneuraceae. Chiloscyphus, Plagiochila, and Riccardia are the richest genera. A separate key for each group with similar characters and alphabetical taxa list are provided.

Key words. Bogs, Southern South America, bryophytes, hepatics, key.

RESUMEN

Los briófitos juegan un rol clave en los ecosistemas turbosos, participan directamente en la constitución de la turba y en el mantenimiento de estos ecosistemas. Sin embargo, el conocimiento de este grupo es muy limitado, especialmente para las hepáticas. En consecuencia, se presenta una clave para determinar hepáticas, restringidas a turberas y bosques pantanosos de Tepualia stipularis (Hook. & Arn.) Griseb. de la Isla Grande de Chiloé (Chile). Esta clave incluye los principales taxones hallados en estos hábitats y está basada en caracteres vegetativos para facilitar la identificación. Se presentan 52 especies y 28 géneros. Estos taxones pertenecen a 19 familias. Las familias mejor representadas son Lepidoziaceae, Lophocoleaceae, Plagiochilaceae y Aneuraceae. Los géneros con la mayor cantidad de especies son Chiloscyphus, Plagiochila y Riccardia. Se entregan además claves separadas para cada grupo de plantas con caracteres afines y una lista en orden alfabético de los taxones incluidos.

Palabras clave. Turberas, sur de América del Sur, briófitos, hepáticas, clave.

Recibido:   27/01/2014

Aceptado:  30/04/2014

INTRODUCTION

Bryophytes form an important part of peatland ecosystems. Peat is often made up largely of bryophyte biomass, and 90-100% of the ground layer is usually covered by bryophytes (Vitt & Belland 1995). Nevertheless, this group is poorly known and rarely included in floristic and vegetation studies because they are difficult to sample and identify.

The knowledge of Chilean bryophyte flora is highly limited. Normally, this botanical group is not considered in studies of flora and vegetation. Thus, bryophytes are not included in the Red Book of Chilean Terrestrial Flora (Benoit 1989).

Field identification of bryophytes is generally difficult, as it requires the examination of microscopic characters and time-consuming work in the laboratory. Moreover, the identification of Chilean liverwort flora is fraught with difficulty due to the sparseness of recent taxonomic literature. Hässel de Menéndez & Rubies (2009) published a Catalogue of the Marchantiophyta and Anthocerotophyta; nevertheless, Chile does not have a national compilation work of liverwort flora yet. The closest monographic work is Cryptogamic Flora of Tierra del Fuego (Hässel de Menéndez & Solari 1976) but unfortunately it only includes a few orders and families. In addition, there are only a few works that include keys for determination of species, e.g., Hepaticae of Brunswick Peninsula (Engel 1978). An alternative way to determine Chilean specimens is to use exotic works, such as: New Zealand flora (Engel & Glenny 2008), Latin-American floras (Gradstein et al. 2001, Gradstein & Pinheiro da Costa 2003), compilations of Southern Hemisphere species (Schuster 2000, Schuster 2002) or monographic papers (Fulford 1963, Fulford 1966, Fulford 1968, Fulford 1976). However, these works only consider some species and genera.

In Chiloé, peatlands and Tepualia stipularis (Hook. & Arn.) Griseb. forests are closely related by their bryophyte floras (Villagrán & Barrera 2002, Villagrán et al. 2003, Villagrán et al. 2002, Villagrán et al. 2005) and their origins (Díaz et al. 2007, Díaz et al. 2008, Zegers et al. 2006).

During the fieldwork of floristic and ecological research in Sphagnum peatlands and Tepualia forests of Isla Grande de Chiloé ( Chile ), bryophytes were collected and studied. In that work, bryo-lichenic flora was described and compared, finding that these ecosystems are related but have differences in their compositions (León 2012). As a complement of that study, we present a key to determine liverworts, restricted to peatland habitats and swamp forests of Tepualia stipularis (Hook. & Arn.) Griseb. of Isla Grande de Chiloé ( Chile ). The aims of this work are to increase the knowledge of local bryophyte flora and to facilitate the identification of these plants.

Study area

The study area is located in the Isla Grande de Chiloé, Región de Los Lagos, Chile (42°-43° S and 73°-75°W). The prevailing climate is wet temperate with a strong oceanic influence (di Castri & Hajek 1976). The total annual rainfall is about 2,300 mm (CONAF 2009), reaching 5,000 - 6,000 mm in some areas, with a mean summer temperature of 10.2ºC and a mean winter temperature of 6.2ºC (Pérez et al. 2003).

The vegetation of Chiloé Island has a mixed composition of broad-leaved evergreen rain forests and it mainly belongs to the North Patagonian and Valdivian forests. North Patagonian forest type is floristically defined by the dominance of shade-tolerant conifers (Podocarpaceae), in addition to Drimys winteri J.R. Forst. & G. Forst. and Nothofagus nitida (Phil.) Krasser in the main canopy, and together with Tepualia stipularis and other Myrtaceae tree species in the understory. Valdivian forests are generally dominated by a different set of broad-leaved evergreen tree species, such as Eucryphia cordifolia Cav. and Aextoxicon punctatum Ruiz & Pav., and several Myrtaceae species in the main canopy and subcanopy (Armesto et al. 1996, Donoso 1993, Gutiérrez et al. 2009). Nevertheless, the rural landscapes of Chiloé Island are also composed by shrublands, secondary forests, plantations of exotic tree species, anthropogenic grasslands, peatlands, and swamp forests.

In Chiloé, the most abundant peatlands are dominated by lax cushions of Sphagnum moss. In general, these cushions are associated with other bryophytes and lichens, also, with sedges (Carex magellanica Lam. and Oreobolus obtusangulus Gaudich.), rushes (Juncus procerus E. Mey., J. stipulatus Nees & Meyen and Apodasmia chilensis (Gay) B.G. Briggs & L.A.S. Johnson) and shrubs (Empetrum rubrum Vahl ex Willd., Baccharis patagonica Hook. & Arn. and Tepualia stipularis). Furthermore, these areas can present isolated trees such as: Pilgerodendron uviferum (D. Don) Florin, Nothofagus antarctica (G. Forst.) Oerst. and N. nitida. Considering the origin of peatlands, we can recognize two types: glaciogenic and anthropogenic (Díaz et al. 2008). Glaciogenic peatlands were formed by peat accumulation in open water after glacial retreat. Anthropogenic peatlands correspond to flooded areas colonized by Sphagnum moss after the burning or logging of forests (Tepualia stipularis, Pilgerodendron uviferum and Fitzroya cupressoides (Molina) I.M. Johnst.) in areas with poor drainage soils.

The most common swamp forests are dominated by Tepualia stipularis. This type of forest can be associated with Pilgerodendron uviferum and/or Drimys winteri. It grows in waterlogged areas (García & Ormazabal 2008) and it can accumulate organic matter (Veblen & Schlegel 1982).

We studied ten sites located in the northern and central parts of the island. Two kinds of Sphagnum peatlands were studied, which were defined according to their origin and their characteristic vegetation (Díaz et al. 2008). The three study areas representing the glaciogenic peatland (GP) type were: Río Negro, Los Caulles, and Púlpito; and the five study areas representing the anthropogenic peatland (AP) were: Senda Darwin, Lecam, Pumanzano, Río Chepu and Teguel. In addition, two sites of Tepualia forest were sampled, Parque Nacional Chiloé and another area of Senda Darwin.

The nomenclature and classification follow Hässel de Menéndez & Rubies (2009) and Crandall-Stotler et al. (2009), respectively.

RESULTS

The key presented below is based on vegetative characters to facilitate the identification. Fifty-two species and 28 genera are included. These taxa belong to 19 families. The best represented families are: Lepidoziaceae (10 species), Lophocoleaceae (8 species), Plagiochilaceae (7 species), and Aneuraceae (7 species). Chiloscyphus, Plagiochila and Riccardia are the richest genera. A separate key for each group with similar characters is provided.

1. Plants without leaves (thallose)...Group A

1’. Plants with leaves (foliose).....................2

2. Leaves conduplicate....................Group B

2’. Leaves non-conduplicate........................3

3. Leaves deeply dissected into hair-like segments which are not more than 1-2 cells wide at base..................................Group C

3’. Leaves undivided or divided into segments which are more than 2 cells wide at base...4

4. Leaves of mature stems always 3-10 lobed.......................................................Group D

4’. Leaves of mature stems unlobed or bi-lobed; leaf margins entire, dentate or ciliate.....................................................5

5. Leaf insertion slightly or clearly incubous........................................Group E

5’. Leaf insertion transverse or succubous.......................................6

6. Underleaves lacking or minute................7

6’. Underleaves distinct...............................8

7. Leaf insertion clearly succubous.......................................Group F

7’. Leaf insertion transverse or slightly succubous.....................................Group G

8. Cuticle striate to papillose............Group H

8’. Cuticle smooth.............................Group I

GROUP A. Thallose (Riccardia)

1. Thallus with multicellular projections.....2

1’. Thallus without multicellular projections..............................4

2. Thallus with a peripheral layer of overlapping empty cone cells................Riccardia prehensilis (Hook. & Tayl.) C. Massal.

2’. Thallus without a peripheral layer of overlapping empty cone cells...................3

3. Thallus with squamiform multicellular projections...........Riccardia spinulifera A. Massal.

3’. Thallus with filiform multicellular projections.........Riccardia hyalitricha Hässel

4. Thallus filamentous, wide 1 to 2.5 times the thickness; small cells with thickened walls........................Riccardia alcicornis (Hook. f. & Tayl.) Trev.

4’. Thallus ribbon-shaped, wide more than 2.5 times the thickness...................................5

5. Branches mainly pluripinnate; epidermal cells with distinct thickened walls..................Riccardia amnicola Hässel

5’. Branches simple or pinnate; epidermal cells with walls thin to slightly thickened........6

6. Plants forming dense carpets; apices of the axes directed along the same lines; branches very short; diameter of the inner cells similar; thallus thick...........Riccardia floribunda (Stephani) A. Evans

6’. Plants creeping, mixed with other bryophytes; branches simple to pinnate; diameter of the inner cells larger than the central cells; thallus laminar........Riccardia rivularis Hässel

GROUP B. Foliose. Conduplicate

1. Leaf insertion transverse or succubous....2

1’. Leaf insertion incubous..........................3

2. Leaves with dentate lamellae; insertion line single......................................Schistochila

Underleaves bifid from 4/5 its length; leaf cells elongated parallel to the lamellae and thin hyaline walls. Schistochila lamellata (Hook.) Dumort.

2’. Leaves without dentate lamellae; insertion line complex...........................Balantiopsis

Plants frequently with a deep red pigmentation; dorsal lobes dentate-laciniate, narrowed to the apex, and strongly flattened over the ventral lobes. Balantiopsis cancellata (Nees) Stephani

3. Underleaves absent........................Radula

Dorsal lobe ovate and concave; ventral lobe half the size of dorsal lobe. Radula decora Gottsche ex Stephani

3’. Underleaves present...............................4

4. Underleaves with margin entire.....Porella

Trigones large, knot-like; perianth mouth narrow, short-ciliate, the cilia of 1 to 3 thick-walled cells; underleaves rounded and recurved at apex; lobes and underleaves usually of similar size. Porella subsquarrosa (Nees & Mont.) Trevis.

4’. Underleaves bilobed or with irregular margin.......................................................5

5. Ventral lobe united for most of their length with dorsal lobe along an elongated keel; perianth usually pentagonal; hyaline papilla distal to ventral lobe tooth; plants green to yellow-green..............Cheilolejeunea spp.

5’. Ventral lobe nearly free from dorsal lobe; plants often with reddish, brownish, or dark green coloration.......................................6

6. Leaf margins entire....................Frullania

Ventral lobes inflated and obliquely inserted; stylus acute, inconspicuous and composed of only a few cells. Frullania boveana C. Massal.

6’. Leaf margins ciliate................................7

7. Underleaves of main axis bifid..................Gackstroemia

Paraphyllia lacking; dorsal lobes of main axis auriculate; cilia of dorsal lobes of branch leaves and helmets consistently present. Gackstroemia magellanica (Lam.) Trevis.

7’. Underleaves of main axis quadrifid...............................Lepidogyna

Paraphyllia present; dorsal lobe cordate; ventral lobe lanceolate or cylindrical with a unciform tooth; small trigones. Lepidogyna menziesii (Hook.) R.M. Schust.

GROUP C. Foliose. Leaves with hair-like segments

1. Lamina obtrapezoidal with 5 segments, segments with several opposite cilia; hyaloderm absent.......................Leiomitra

Stems without paraphyllia; lamina of leaf without superficial cilia; some of the divisions of leaf segments recurved.  Leiomitra elegans (Lehm.) Hässel de Menéndez

1’. Lamina rectangular with (2)4-6 segments, uniseriate, without opposite cilia; hyaloderm present..................................2 (Telaranea)

2. Stem leaves with a lamina of 3 or 4 rows of cells high; segments 4 or 6 cells long; perianth mouth crenulate..............Telaranea plumulosa (Lehm. & Lindenb.) Fulford

2’. Stem leaves with a lamina 1 or 2 rows of cells high; segments straight and stiff, 5 or 6 cells long; perianth mouth ciliate.......................................Telaranea blepharostoma (Stephani) Fulford

GROUP D. Foliose. Stem leaves 3-10 lobed

1. Isophyllous (underleaves similar to lateral leaves in size and shape)..........................2

1’. Anisophyllous (underleaves differing in form and size from lateral leaves)............3

2. Plants robust (5- 8 mm wide); stem leaves and underleaves laciniate...........Lepicolea

Leaf-segments ending in a hyaline tip of a few to several long cells; vitta absent.Lepicolea ochroleuca (L. f. ex Spreng.) Spruce

2’. Plants minute (0.3- 0.6 mm wide); stem leaves and underleaves without teeth.................................................Kurzia

Base of leaf segments 5 to 10 cells wide; leaves erect-spreading, segments only slightly incurved; stem with a layer of 12 large cortical cells........Kurzia setiformis (De Not.) J.J. Engel & R.M. Schust.

3. Leaves with 2-3 teeth at apex; branching forked; plants 1- 6 mm wide........Bazzania

Leaves 3-thoothed, without vitta; underleaves with margin dentate-aserrate, hyaline border and connate with a pair of lateral leaves. Bazzania peruviana (Nees) Trevis.

3’. Leaves divided into 4-6 segments; branching bipinnate; plants 0.5-1.5 wide..................................................4(Lepidozia)

4. Margin of leaves and underleaves without teeth or cilia.................................................5

4’. Margin of leaves and underleaves with one to several teeth or cilia................................6

5. Leaf segments in conspicuous pairs, incurved; leaf-cells large, usually 16-25 × 16-20 µm at base of a segment; cuticule smooth......Lepidozia fuegiensis Stephani

5’. Leaf segments not conspicuous in pairs, 4 to 6 cells wide at base; leaf-cells 17-20 × 20 µm at the base of a segment; cuticule papillose.........Lepidozia laevifolia (Hook. f. & Taylor) Gottsche, Lindenb. & Nees

6. Dorsal margin of the leaf with a sharp tooth; underleaf lamina with at least one large tooth on either side..........Lepidozia chordulifera Taylor

6’. Dorsal margin of the leaf denticulate, and short-ciliate or with several teeth near the base; underleaf lamina usually with a lateral tooth on either side..............Lepidozia chiloensis Stephani

GROUP E. Foliose. Leaves of mature stems unlobed or 2-lobed; incubous

1. Hyaloderm present............Hyalolepidozia

Leaves bifid, clearly incubously oriented, wider than stem and ±contigous. Hyalolepidozia bicuspidata (C. Massal.) S.W. Arnell ex Grolle

1’. Hyaloderm absent...................................2

2. Isophyllous or subisophyllous (underleaves similar to lateral leaves in size and form)...3

2’. Anisophyllous (underleaves differing in form and size from lateral leaves)............4

3. Leaves distinctly vittate, vitta of elongate cells extended into each lobe; leaves falcate-lanceolate, deeply bifid (50-70% of the leaf), lobes lanceolate to acuminate..............................................................Herbertus

Leaves and underleaves more than twice as long as wide; lobe of leaves and underleaves acuminate by only 2 or 3 cells; vitta covering about half the width of the base, ending well below the apex; trirradiate trigones and thick walls. Herbertus runcinatus ( Taylor) Kuhnem.

3’. Leaves never vittate, bilobed (5-50% of the leaf); lobes never lanceolate or acuminate.......................................................Isotachis

Margins of underleaves with 4 to many broad teeth; median leaf cells without intermediate thickenings; trigones conspicuous; cuticle slightly papillose. Isotachis madida (Hook. f. & Taylor) Mitt.

4. Leaves unlobed, apices entire or bidentate; cortical cells with thick wall.....Calypogeia

Underleaves bilobed with rhizoids at base. Calypogeia sphagnicola (Arnell & J. Perss.) Warnst. & Loeske

4’. Leaves deeply bifid or trifid, lobes lanceolate to acuminate; cortical cells with thin wall..............................Acromastigum

Ventral segment of nearly twice as long as dorsal segment; cell walls distinctly pigmented with yellow or brown, specially cortical cells. Acromastigum anisostomum (Lehm. & Lindenb.) A. Evans

GROUP F. Foliose. Leaves of mature stems unlobed or 2-lobed. Underleaves lacking or minute. Clearly succubous

1. Plants very small (0.5- 1 mm wide); leaves bilobed......Cephalozia skottsbergii Steph.

1’. Plants medium to robust (4- 8 mm wide); leaves entire to dentate......2 (Plagiochila)

2. Leaves long trapezoidal to rectangular....3

2’. Leaves oval to obcuneate.......................5

3. Leaves curved rectangular, ventral and dorsal margin without teeth.....Plagiochila lophocoleoides Mont.

3’. Leaves trapezoidal, ventral and dorsal margin with teeth.........................................4

4. Plants laterally compressed in dry condition; leaves trapezoidal; leaf apex with 2-3 strong unequal teeth; median cells isodiametric.......Plagiochila stictaecola Mont.& Gottsche

4’. Plants flat in dry condition; leaves long trapezoidal; leaf apex with 2-5 unequal strong teeth; median cells longitudinally enlarged.....................................Plagiochila rubescens (Lehm. & Lindenb.) Lindenb.

5. Plants arborescent...................................6

5. Plants not arborescent.............................7

6. Plants dendroid (5- 8 cm long); leaves quite distant; dorsal leaf margin entire, 3-4 short teeth with 1 cell long near the apex of leaf; ventral leaf margin with 6-7 teeth with 3-4 cells long..............Plagiochila subpectinata Besch. & C. Massal.

6’. Plants short arborescent (1- 1,8 cm long), originated from a vigorous creeping system with stoloniferous microphylous branches; leaves imbricate; teeth of different size , all around leaves (20-30 teeth).......Plagiochila lechleri Gottsche

7. Leaves imbricate; marginal teeth 1-2 cells long......Plagiochila hookeriana Lindenb.

7’. Leaves distant; marginal teeth 1-5 cells long...............Plagiochila chonotica Tayl.

GROUP G. Foliose. Leaves of mature stems unlobed or 2-lobed. Underleaves lacking or minute. Transverse or slightly succubous

1. Leaves bifid.....................Anastrophyllum

Leaves strongly falcate-secund, asymmetric, broadly overlapping dorsally; leaf margins smooth and entire, sometimes weakly crenulate. Anastrophyllum schismoides ( Mont.) Stephani

1’. Leaves orbicular and entire....................2

2. Terminal branching completely absent; flagellae regularly produced...Cryptochila

Leaf surface smooth; trigones lacking; stem cortex in 3 (4) cell layers with strongly thickened walls. Cryptochila grandiflora (Lindenb. & Gottsche) Grolle

2’. Terminal branching present; flagellae only rarely and sporadically produced, mostly absent....................................Jamesoniella

Leaf surface coarsely papillose; trigones medium to bulging; stem cortex poorly differentiated in 1 layer of thickened cells.  Jamesoniella colorata (Lehm.) Stephani

GROUP H. Foliose. Leaves of mature stems unlobed or 2-lobed. Underleaves distinct. Cuticle striate to papillose

1. Leaf apices undivided- short bifid; perianths absent................................Saccogynidium

 Leaves ovate, leaf cuticle with peg-like papillae. Saccogynidium australe (Mitt.) Grolle

1’. Leaf apices distinctly bifid; perianths present......................................................2

2. Leaves ovoid to oblong; leaf-margins entire.....................................Nothostrepta

Leaves always longer than wide; underleaves lanceolate, connate at the base with one leaf. Nothostrepta bifida (Stephani) R.M. Schust.

2’. Leaves obtrapezoidal; leaf-margins dentaculate-lacinate...............Balantiopsis

Asymmetric leaves; dorsal lobe less than half of ventral lobe; underleaves ovate and bifid.  Balantiopsis asymmetrica (Herzog) J.J. Engel

GROUP I. Foliose. Leaves of mature stems unlobed or 2-lobed. Underleaves distinct. Cuticle smooth

1. Perianth strongly laterally compressed, mouth truncate, wide, 2-lipped.........................................................Leptoscyphus

Leaves entire; perianth mouth dentate; plants not laterally compressed; underleaves bifid, segments divergent, sinus obtuse, segments 3 cells wide at base.  Leptoscyphus huidobroanus ( Mont.) Gottsche

1’. Perianth trigonous to trigonous inflated............................................2 (Chiloscyphus)

2. Leaf apices entire or with a few sporadic teeth..........................................................3

2’. Leaf apices dentate, lobate or bifid.........5

3. Leaves deeply adaxially concave, orbicular to reniform; underleaves orbicular to subrectangular, apices undivided or shorty bifid..............Chiloscyphus humilis (Hook. f. & Taylor) Hässel de Menéndez

3’. Leaves plane or convex, not adaxially concave, ovate; underleaves bifid with numerous lateral teeth..............................4

4. Plants robust (4- 6 cm wide); stem 18-22 cells wide; leaves red brown with green apices; underleaves close to one leaf; perianth mouth dentate.........Chiloscyphus horizontalis (Hook.) Nees

4’. Plants delicate (1- 4 cm wide); steam 6-16 cells wide; leaves brown or red-brown; underleaves connate on both sides to leaves; mouth perianth lacinate...........Chiloscyphus magellanicus Stephani

5. Leaf clearly bifid or sometimes trifid......6

5’. Leaf ciliate or with many teeth, not clearly bifid...........................................................7

6. Leaves mainly subrectangular, bifid, rarely trifid, sinus sub-truncate; underleaves connate with leaves on both sides, wings conspicuous...........Chiloscyphus attenuatus (Stephani) J.J. Engel & R.M. Schust.

6’. Leaves ovate, bifid, sinus round (U-form); underleaves connate on one side to a leaf base, the wing very narrow..........Chiloscyphus subviridis (Hook. f. & Taylor) J.J. Engel & R.M. Schust.

7. Leaves broadly ovate, long decurrent; underleaves deeply inserted on the stem and long decurrent by a narrow band, free from the leaves.............Chiloscyphus striatellus C. Massal.

7’. Leaves rectangular to orbicular, scarcely decurrent; underleaves connate with both rows of leaves, wings narrow or scarcely developed..............Chiloscyphus breutelii (Gott.) Engel & Schust.

Taxa included

Acromastigum anisostomum (Lepidoziaceae)

Anastrophyllum schismoides (Scapaniaceae) (Fig. 2H)

Balantiopsis asymmetrica (Balantiopsidaceae)

Balantiopsis cancellata (Balantiopsidaceae) (Fig. 1D)

Bazzania peruviana (Lepidoziaceae) (Fig. 2I)

Calypogeia sphagnicola (Calypogeiaceae) (Fig. 2D)

Cephalozia skottsbergii (Cephaloziaceae)

Cheilolejeunea sp. (Lejeuneaceae)

Chiloscyphus attenuatus (Lophocoleaceae)

Chiloscyphus breutelii (Lophocoleaceae)

Chiloscyphus horizontalis (Lophocoleaceae) (Fig. 3A)

Chiloscyphus humilis (Lophocoleaceae)

Chiloscyphus magellanicus (Lophocoleaceae)

Chiloscyphus striatellus (Lophocoleaceae)

Chiloscyphus subviridis (Lophocoleaceae)

Cryptochila grandiflora (Jamesoniellaceae)

Frullania boveana (Frullaniaceae) (Fig. 1G)

Gackstroemia magellanica (Lepidolaenaceae) (Fig. 1H)

Herbertus runcinatus (Herbertaceae) (Fig. 2G)

Hyalolepidozia bicuspidata (Lepidoziaceae) (Fig. 3D)

Isotachis madida (Balantiopsidaceae)

Jamesoniella colorata (Jamesoniellaceae) (Fig. 3B)

Kurzia setiformis (Lepidoziaceae) (Fig. 2B)

Leiomitra elegans (Trichocoleaceae) (Fig. 1J)

Lepicolea ochroleuca (Lepicoleaceae) (Fig. 2C)

Lepidogyna menziesii (Lepidolaenaceae) (Fig. 1I)

Lepidozia chiloensis (Lepidoziaceae)

Lepidozia chordulifera (Lepidoziaceae) (Fig. 2F)

Lepidozia fuegiensis (Lepidoziaceae)

Lepidozia laevifolia (Lepidoziaceae)

Leptoscyphus huidobroanus (Lophocoleaceae)

Nothostrepta bífida (Jamesoniellaceae)

Plagiochila chonotica (Plagiochilaceae)

Plagiochila hookeriana (Plagiochilaceae)

Plagiochila lechleri (Plagiochilaceae)

Plagiochila lophocoleoides (Plagiochilaceae)

Plagiochila rubescens (Plagiochilaceae)

Plagiochila stictaecola (Plagiochilaceae) (Fig. 2E)

Plagiochila subpectinata (Plagiochilaceae)

Porella subsquarrosa (Porellaceae) (Fig. 1C)

Radula decora (Radulaceae) (Fig. 1D)

Riccardia alcicornis (Aneuraceae)

Riccardia amnícola (Aneuraceae)

Riccardia floribunda (Aneuraceae)

Riccardia hyalitricha (Aneuraceae)

Riccardia prehensilis (Aneuraceae) (Fig. 1A)

Riccardia rivularis (Aneuraceae) (Fig. 1B)

Riccardia spinulifera (Aneuraceae)

Saccogynidium australe (Geocalycaceae) (Fig. 3C)

Schistochila lamellata (Schistochilaceae) (Fig. 1F)

Telaranea blepharostoma (Lepidoziaceae) (Fig. 2A)

Telaranea plumulosa (Lepidoziaceae)

ACKNOWLEDGEMENTS

This research was supported by AECID A/025081/2009, Cooperación al Desarrollo UCM 4138114 and AECID A/030011/2011 grants. We are very grateful to Alfonso Benítez-Mora for his field assistance. Also, we wish to thank to Prof. Gracielle Pereira Rocha at Academic Writing Center U.S. Embassy for her assistance with English language editing, and anonymous reviewers for their useful comments and suggestions. C. A. León acknowledges the support of the doctoral fellowship provided by CONICYT-Gobierno de Chile. This is a contribution to the Research Program of LTSER-Chile network at Senda Darwin Biological Station, Chiloé, Chile .

LITERATURE CITED

1. Armesto, J. J., J. C. Aravena, C. Villagrán, C. Pérez & G. Parker. 1996. Bosques templados de la Cordillera de la Costa. In: J. J. Armesto, C. Villagrán and M. K. Arroyo (eds.). Ecología de los bosques nativos de Chile: 199-213. Editorial Universitaria, Santiago de Chile.

2. Benoit, I. 1989. Libro rojo de la flora terrestre de Chile. Corporación Nacional Forestal. Impresora Creces Ltd., Santiago de Chile. 157 pp.

3. CONAF. 2009. Plan de Acción Provincial Chiloé - Plan de Gestión Territorial. Oficina Provincial Chiloé - Corporación Nacional Forestal, Castro. 49 pp.

4. Crandall-Stotler, B., R. E. Stotler & D. G. Long. 2009. Morphology and classification of the Marchantiophyta. In: B. Goffinet and A. J. Shaw (eds.). Bryophyte Biology: 1-54. Cambridge University Press, Cambridge.

5. di Castri, F. & E. R. Hajek. 1976. Bioclimatología de Chile. Editorial Universidad Católica de Chile, Santiago, Chile . 128 pp.

6. Díaz, M. F., S. Bigelow & J. J. Armesto. 2007. Alteration of the hydrologic cycle due to forest clearing and its consequences for rainforest succession. Forest Ecology and Management 244: 32-40.

7. Díaz, M. F., J. Larraín, G. Zegers & C. Tapia. 2008. Caracterización florística e hidrológica de turberas de la Isla Grande de Chiloé, Chile. Revista Chilena de Historia Natural 81: 445-468.

8. Donoso, C. 1993. Bosques templados de Chile y Argentina. Variación, estructura y dinámica. Editorial Universitaria, Santiago de Chile. 483 pp.

9. Engel, J. J. 1978. A taxonomic and phytogeographic study of Brunswick Peninsula ( Strait of Magellan) Hepaticae and Anthocerotae. Fieldiana Botany 41: 1-319.

10. Engel, J. J. & D. Glenny. 2008. A flora of the liverworts and hornworts of New Zealand . Monographs in Systematic Botany 110: 1-897.

11. Fulford, M. 1963. Manual of the leafy Hepaticae of Latin America Part I. Memoirs of the New York Botanical Garden 11: 1-172.

12. Fulford, M. 1966. Manual of the leafy Hepaticae of Latin America Part II. Memoirs of the New York Botanical Garden 11: 173-276.

13. Fulford, M. H. 1968. Manual of the leafy Hepaticae of Latin America Part III. Memoirs of the New York Botanical Garden 11: 277-392.

14. Fulford, M. H. 1976. Manual of the leafy Hepaticae of Latin America Part IV. Memoirs of the New York Botanical Garden 11: 393-535.

15. García, N. & C. Ormazabal. 2008. Árboles Nativos de Chile. Enersis S.A, Santiago de Chile. 196 pp.

16. Gradstein, S. R., S. P. Churchill & N. Sallazar-Allen. 2001. Guide to the Bryophytes of Tropical America . Memoirs of the New York Botanical Garden 86: 1-577

17. Gradstein, S. R. & D. Pinheiro da Costa. 2003. The Hepaticae and Anthocerotae of Brazil . Memoirs of the New York Botanical Garden 87: 1-318.

18. Gutiérrez, A. G., J. J. Armesto, J. C. Aravena, M. Carmona, N. V. Carrasco, D. A. Christie, M. P. Pena, C. Perez & A. Huth. 2009. Structural and environmental characterization of old-growth temperate rainforests of northern Chiloe Island, Chile : Regional and global relevante. Forest Ecology and Management 258: 376-388.

19. Hässel de Menéndez, G. & M. Rubies. 2009. Catalogue of the Marchantiophyta and Anthocerotophyta from Chile , Argentina and Uruguay . Nova Hedwigia 134: 1-672.

20. Hässel de Menéndez, G. & S. S. Solari. 1976. Bryophyta Hepaticopsida: Calobryales, Jungermanniales, Vetaformaceae, Balantiopsaceae. In: S. A. Guarrera, I. Gamundi de Amos and D. Rabinovich de Halperin (eds.). Flora Criptogámica de Tierra del Fuego: 1-181. Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, Buenos Aires.

21. León, C. A. 2012. Caracterización florística y ecológica de turberas esfagnosas de la isla Grande de Chiloé-Chile: una herramienta para la conservación y el desarrollo sostenible. Tesis Doctoral. Universidad Complutense de Madrid, Madrid. 233 pp.

22. Pérez, C. A., J. J. Armesto, C. Torrealba & M. R. Carmona. 2003. Litterfall dynamics and nitrogen use efficiency in two evergreen temperate rainforests of southern Chile . Austral Ecology 28: 591-600.

23. Schuster, R. M. 2000. Austral Hepaticae Part I. Nova Hedwigia Beih. 118: 1-524.

24. Schuster, R. M. 2002. Austral Hepaticae Part II. Nova Hedwigia Beih. 119: 1-606.

25. Veblen, T. & F. M. Schlegel. 1982. Reseña ecológica de los bosques del sur de Chile. Bosque (Valdivia) 4: 73-115.

26. Villagrán, C. & E. Barrera. 2002. Musgos del Archipiélago de Chiloé, Chile. Corporación Nacional Forestal - Gobierno de Chile, Puerto Montt, Chile. 23 pp.

27. Villagrán, C., E. Barrera, J. Cuvertino & N. García. 2003. Musgos de la Isla Grande de Chiloé, X Región, Chile: Lista de especies y rasgos fitogeográficos. Boletín del Museo Nacional de Historia Natural Chile 52: 17-44.

28. Villagrán, C., E. Barrera & C. Medina. 2002. Las Hepáticas del Archipiélago de Chiloé, Chile. Corporación Nacional Forestal - Gobierno de Chile, Puerto Montt, Chile. 26 pp.

29. Villagrán, C., G. Hässel de Menéndez & E. Barrera. 2005. Hepáticas y Anthocerotes del Archipiélago de Chiloé. Corporación de Amigos del Museo Nacional de Historia Natural, Santiago de Chile. 160 pp.

30. Vitt, D. H. & R. J. Belland. 1995. The bryophytes of peatlands in continental western Canada . Fragmenta Floristica et Geobotanica 40: 339-348.

31. Zegers, G., J. Larraín, M. F. Díaz & J. J. Armesto. 2006. Impacto ecológico y social de la explotación de pomponales y turberas de Sphagnum en la Isla Grande de Chiloé. Revista Ambiente y Desarrollo 22: 28-34.

Cómo citar

APA

León, C. y Oliván, G. (2014). LIVERWORTS OF PEATLANDS AND TEPUALIA STIPULARIS (HOOK. & ARN.) GRISEB. SWAMP FORESTS IN ISLA GRANDE DE CHILOÉ (CHILE): KEY FOR IDENTIFICATION. Caldasia, 36(1), 23–35. https://doi.org/10.15446/caldasia.v36n1.43889

ACM

[1]
León, C. y Oliván, G. 2014. LIVERWORTS OF PEATLANDS AND TEPUALIA STIPULARIS (HOOK. & ARN.) GRISEB. SWAMP FORESTS IN ISLA GRANDE DE CHILOÉ (CHILE): KEY FOR IDENTIFICATION. Caldasia. 36, 1 (ene. 2014), 23–35. DOI:https://doi.org/10.15446/caldasia.v36n1.43889.

ACS

(1)
León, C.; Oliván, G. LIVERWORTS OF PEATLANDS AND TEPUALIA STIPULARIS (HOOK. & ARN.) GRISEB. SWAMP FORESTS IN ISLA GRANDE DE CHILOÉ (CHILE): KEY FOR IDENTIFICATION. Caldasia 2014, 36, 23-35.

ABNT

LEÓN, C.; OLIVÁN, G. LIVERWORTS OF PEATLANDS AND TEPUALIA STIPULARIS (HOOK. & ARN.) GRISEB. SWAMP FORESTS IN ISLA GRANDE DE CHILOÉ (CHILE): KEY FOR IDENTIFICATION. Caldasia, [S. l.], v. 36, n. 1, p. 23–35, 2014. DOI: 10.15446/caldasia.v36n1.43889. Disponível em: https://revistas.unal.edu.co/index.php/cal/article/view/43889. Acesso em: 19 abr. 2024.

Chicago

León, Carolina, y Gisela Oliván. 2014. «LIVERWORTS OF PEATLANDS AND TEPUALIA STIPULARIS (HOOK. & ARN.) GRISEB. SWAMP FORESTS IN ISLA GRANDE DE CHILOÉ (CHILE): KEY FOR IDENTIFICATION». Caldasia 36 (1):23-35. https://doi.org/10.15446/caldasia.v36n1.43889.

Harvard

León, C. y Oliván, G. (2014) «LIVERWORTS OF PEATLANDS AND TEPUALIA STIPULARIS (HOOK. & ARN.) GRISEB. SWAMP FORESTS IN ISLA GRANDE DE CHILOÉ (CHILE): KEY FOR IDENTIFICATION», Caldasia, 36(1), pp. 23–35. doi: 10.15446/caldasia.v36n1.43889.

IEEE

[1]
C. León y G. Oliván, «LIVERWORTS OF PEATLANDS AND TEPUALIA STIPULARIS (HOOK. & ARN.) GRISEB. SWAMP FORESTS IN ISLA GRANDE DE CHILOÉ (CHILE): KEY FOR IDENTIFICATION», Caldasia, vol. 36, n.º 1, pp. 23–35, ene. 2014.

MLA

León, C., y G. Oliván. «LIVERWORTS OF PEATLANDS AND TEPUALIA STIPULARIS (HOOK. & ARN.) GRISEB. SWAMP FORESTS IN ISLA GRANDE DE CHILOÉ (CHILE): KEY FOR IDENTIFICATION». Caldasia, vol. 36, n.º 1, enero de 2014, pp. 23-35, doi:10.15446/caldasia.v36n1.43889.

Turabian

León, Carolina, y Gisela Oliván. «LIVERWORTS OF PEATLANDS AND TEPUALIA STIPULARIS (HOOK. & ARN.) GRISEB. SWAMP FORESTS IN ISLA GRANDE DE CHILOÉ (CHILE): KEY FOR IDENTIFICATION». Caldasia 36, no. 1 (enero 1, 2014): 23–35. Accedido abril 19, 2024. https://revistas.unal.edu.co/index.php/cal/article/view/43889.

Vancouver

1.
León C, Oliván G. LIVERWORTS OF PEATLANDS AND TEPUALIA STIPULARIS (HOOK. & ARN.) GRISEB. SWAMP FORESTS IN ISLA GRANDE DE CHILOÉ (CHILE): KEY FOR IDENTIFICATION. Caldasia [Internet]. 1 de enero de 2014 [citado 19 de abril de 2024];36(1):23-35. Disponible en: https://revistas.unal.edu.co/index.php/cal/article/view/43889

Descargar cita

CrossRef Cited-by

CrossRef citations2

1. Daniela Mellado-Mansilla, Carolina A. León, Gabriel Ortega-Solís, Javier Godoy-Güinao, Ricardo Moreno, Iván A. Díaz. (2017). Vertical patterns of epiphytic bryophyte diversity in a montaneNothofagusforest in the Chilean Andes. New Zealand Journal of Botany, 55(4), p.514. https://doi.org/10.1080/0028825X.2017.1364273.

2. William R. Buck, Bruce Allen. (2014). Recent literature on bryophytes — 117(4). The Bryologist, 117(4), p.409. https://doi.org/10.1639/0007-2745-117.4.409.

Dimensions

PlumX

Visitas a la página del resumen del artículo

290

Descargas

Los datos de descargas todavía no están disponibles.