Un Nuevo Paso hacia XQuery Flexible

A New Step towards Flexible XQuery

Marlene Goncalves, MSc., Leonid Tineo, PhD.
Universidad Simon Bolivar, Venezuela
{mgoncalves,leonid} @usb.ve

Recibido para revision 24 de Septiembre de 2007, Aceptado 3 de Diciembre de 2007, Version final 10 de Diciembre de 2007

Resumen—Actualmente, el Web es un gran repositorio de
datos que requiere mecanismos de consulta adecuados. Existen
muchos datos semi-estructurados publicados como documentos
XML. En este contexto, XQuery ha sido concebido con el
propésito de llegar a ser el estindar para consultas a bases de
datos en XML. Este lenguaje de consulta estd basado en el
estindar de consulta XPath. XPath permite la formulacién de
criterios de seleccion booleana basados en expresiones de
caminos. Por otra parte, existen una variedad de aplicaciones
emergentes con requerimientos basados en preferencias que
podrian no ser expresados con consultas basadas en logica
booleana. Una alternativa a este problema seria el uso de la
légica difusa. Distintos autores han aplicado logica difusa a
consultas a bases de datos relacionales. No obstante, pocos
trabajos han sido presentados para hacer mas flexible a los
lenguajes de consulta sobre el Web. En este trabajo, se propone
una extensiéon de expresiones de camino con logica difusa, lo
cual es un nuevo paso hacia un lenguaje XQuery mas flexible
para sistemas de informaciéon no tradicionales basados en el
Web.

Palabras Clave—XML, XML Schema, XQuery, Logica
Difusa, SQLf.

Abstract—Currently, the Web is a great data repository that
requires suitable querying mechanisms. There is a lot of
published semi-structured data in XML documents. In this
sense, XQuery has been conceived with the aim of becoming the
standard for XML database querying. This query language is
based on the single document querying standard XPath. It
allows the formulation of Boolean selection criteria based on
Path Expressions. On the other hand, there is a variety of
emer ging applications with preference based requirements that
could not be expressed with Boolean logic based queries. An
alternative way to this problem would be the use of fuzzy logic.
Several authors have applied fuzzy Logic to relational database
queries. Nevertheless, few works have been presented in order
to make more flexible WWW query languages. In this work, we
propose an extension of path expressions with fuzzy logic. It
would be a new step towards a more flexible XQuery language
for Web based non-traditional information systems.

Keywords—XML, XML Schema, XQuery, Fuzzy Logic, SQL{.

I. INTRODUCTION

ORLD Wide Web is a great data repository which

requires declarative querying languages. In this sense,
the World Wide Web Consortium (W3C) has made several
works in order to provide standard languages for data
exchanging and querying through Internet. A Lot of WWW
published documents use the Extensible Markup Language
XML [7], which it has been designed to describe data and it is
a W3C recommendation for data exchanging. Data of XML
documents may be described using XML Schema [27]. XML
with a XML Schema is designed to be self-descriptive.

In order to provide querying capabilities over XML data,
W3C have defined the language XQuery [29]. It is conceived
to be for XML data like SQL is for relational databases.
Currently, XQuery is supported by all the major database
engines (IBM, Oracle, Microsoft, etc). This language will
become a W3C standard; therefore, it will work among
different products. XQuery is built on XPath [26] expressions
that allow querying XML data. This language is based on the
tree model for XML data. An XML document is seen in the
XML data model [23] as a linearization of a tree structure. At
every node in the tree there are several character strings. The
tree structure and the character strings together form the
information content of an XML document.

XPath expressions involve selection criteria that are
expressed using Boolean logic. It leads to the same rigidity
problem of classic database querying systems: interesting
nearby answers may be lost and there is not discrimination
over given answers [3][5]. Fuzzy sets have been proposed to
be used in database querying in order to solve the rigidity
problem of traditional querying systems. There are some
different proposals of fuzzy set based querying languages. In
particular, SQLf [3] is a fuzzy extension of SQL that allows
fuzzy conditions in any place where SQL allows Boolean
ones. Inspired in SQLf, we propose here an extension of
XPath expressions as a step towards providing a more flexible

Revista Avances en Sistemas e Informatica, Vol.4 No. 3, Medellin, Diciembre de 2007, ISSN 1657-7663

28 Revista Avances en Sistemas e Informatica, Vol.4 No. 3, Medellin, Diciembre de 2007, ISSN 1657-7663

XQuery language. This language would allow to express
user preferences. For example, it would be possible to find
XML documents published in the WWW such as their
recentness is “very current”.

We have structured the present paper as follows: we review
the related works in section 2 and the background in section
3; we present the syntax and semantics for fuzzy terms
through XML Schema in section 4 and we propose fuzzy path
expressions in section 5. Finally, we summarize and point out
to the future in the section 6.

I. RELATED WORKS

Several research works have been devoted to provide more
flexibility in database systems:

— OMRON [18] has a processor that contains a SQL
extension with fuzzy logic and it is a fuzzy information
retrieval library. It is a fuzzy query interface on traditional
databases.

— FQUERY [17] is an effort that adds fuzzy query
functionality over a small DBMS (MS-ACCESS). It allows
using fuzzy quantifiers in order to qualify the quantity of
satisfied criteria from a given list. Partitioned or nested
queries are not allowed.

— ISKREOT (Intelligent System for Knowledge
Representation using Expert system and Object Technology)
[19] is a front-end intelligent information interface operating
through a relational database ORACLE with fuzzy queries.

— FSQL [9][10], it is a fuzzy set based extension of SQL
that incorporates some novelties to allow processing of
inexact information. Many of fuzzy terms are predefined or
must be defined in database modeling. It is in some way
restrictive when a user wants to perform flexible querying
over existing data. It is based on GEFRED [21] model.

— SQLf [3] is a flexible querying language for relational
databases conceived to be a complete extension of SQL with
fuzzy logic. Fuzzy queries supported by SQLf involve fuzzy
terms (atomic predicates, modifiers, connectors, comparators
and quantifiers) whose semantic depends of the user and the
application domain. It supports the use of fuzzy quantifiers in
grouping and nesting. SQLf has been extended to provide a
fuzzy treatment of advanced features from the standards
SQL2 [11] and SQL3[12].

— Additionally, Fukami and Umano [8] proposed a
database engine with fuzzy querying capabilities based on
fuzzy relational algebra operators. Wong and Leung in [31]
and, more recently, Ma and Yan [20], evaluate a fuzzy query
by means of translation to a SQL query but giving non-
discriminated answers.

All these previous works are devoted to deal with relational
databases, by means of fuzzy logic based extension of SQL.
However, it would be useful to have flexible querying systems
for XML. In this sense fewer works have been done.

Some ideas about how extend XPath with fuzzy terms have

been presented in [4]. They have considered: providing a
ranked list of retrieved information items rather than the
usual set oriented one (Fuzzy Subtree Matching), specifying
flexible selection conditions (Fuzzy Predicates) and allowing
the specification of linguistic quantifiers as aggregation
operators (Fuzzy Quantification). Nevertheless, they have not
presented a way of specifying fuzzy terms but they introduced
a set of few built-in predicates. On the other hand, they have
kept out some interesting linguistic terms such as: modifiers,
comparators and connectors. They see the ranking result of
fuzzy criteria as an annotation (or comment) in the result.
Combination of fuzzy predicates is made by means of
arithmetic operations over ranking variables instead of using
fuzzy logic operators.

Other interesting work in the way of making more flexible
XML querying has been made by W3C in [2]. They presented
a language designed to meet the Full-Text identified
requirements. They propose to apply the notion of score to
querying structured data. Besides specifying a match of a full-
text search as a Boolean condition, full-text search
applications typically also have the ability to associate scores
with the results. Such scores express the relevance of those
results to the full-text search conditions. In this later work,
the notion of score is related to a variable that is returned by
the query and is manipulated into the XQuery. Nonetheless,
they propose the use of a generalized inexact match. They
have not considered the possibility of leading user to specify
its preferences by means of linguistic terms definition and
combine it with fuzzy logic operators.

Finally, Soft Information Retrieval is another branch that
uses fuzzy sets in Information Retrieval (IR). Information
Retrieval [25] is a Computing Science branch that allows to
store and access to a large amount of textual, visual, or
auditory information. An Information Retrieval System (IRS)
retrieves pertinent information to a user's query. The user’s
query, the representation of document contents and the
matching from a query representation to a document
representation may be uncertain and often vague.

There is a short survey of fuzzy approaches to IR in[6].
Analysis methods of natural language, probabilistic and fuzzy
techniques are used to modeling the vagueness and
uncertainty, which invariably characterize the management of
information. Herrera et al. [15] present an IRS model that
allows overcoming the problems of information loss and
precision lack when working with discrete linguistic
expression domains or when applying approximation
operations in the symbolic aggregation methods. The work
[16] introduces new averaging operators based on the
weighted power mean for dealing with fuzzy information
retrieval and avoiding that query results do not coincide with
the intuition of the human being when handling “AND” and
“OR” operations.

Previous work [1] deals about an IR system application

Un Nuevo Paso hacia XQuery Flexible - Goncalves y Tineo 29

based on a fuzzy database engine. Documents were registered
in a catalog provided of theirs keywords annotated with
relevance degrees. The system had also a thesaurus of
keywords provided of a fuzzy similarity relation. Given a user
requirement, retrieval was done by means of fuzzy deductive
database techniques implemented in the underlying fuzzy
database engine. We have also proposed and implemented
data source selection systems in previous works [13][14].
Both systems allow document or data source selection
according to user preferences about keywords and quality
parameters such recentness, reliability, completeness,
granularity and so on. They were conceived with a data
source catalog. They provide a query by example interface
over a SQLf engine. In [13] catalog may be provided in XML,
nevertheless, it is loaded into a relational database for
querying.

We would like to allow building Information Retrieval
Systems, Data Source Selection Tools and other XML
document based applications provided of fuzzy logic inside in
a native way. In order to achieving this goal, we make here a
new step towards providing a more flexible XQuery language.
The scope this paper is to integrate fuzzy logic and XPath
expressions, which will allow in future to extent more
complex XQuery constructions that have their basis in XPath.

II. BACKGROUND

Fuzzy sets [32] are intended to model vague concepts or
classes. In a fuzzy set, each element is provided with a degree
that represents its membership. These degrees induce an
order that defines preferences. A function is used in order to
represent such membership. The range of this function is the
real interval [0,1], for a fuzzy set F it is denoted as Lig.

Fuzzy set theory is the base of Fuzzy Logic. In this logic,
the truth-value of a sentence (or satisfaction degree) Li(s) is in
[0,1]. The value O represents completely false, 1 is completely
true. This logic gives meaning to linguistic terms:

— Predicates that are atomic components of this logic
defined by fuzzy sets.

— Modifiers: such as adverbs, negation and antonym,
terms that allow defining modified fuzzy predicates by means
of operations on the membership function.

— Comparators: kind of fuzzy predicates defined on pairs
of elements, they establish fuzzy comparisons.

— Connectors: operators defined for combining fuzzy
sentences. Fuzzy negation, conjunction and disjunction are
extension of the classical. They preserve the existent
correspondence with set operations minus, intersection and
union, respectively.

Quantifiers: terms describing quantities, such as “most
of”, “about a half”, “around 20”. They are an extension of
classical existential and universal.

One remarkable effort in flexible querying for relational
databases is SQLf [3] a fuzzy extension of SQL. Fuzzy

queries involve fuzzy terms whose semantic is user defined.
SQLf basic querying structure is:

SELECT <attributes> FROM <relations>
WHERE <Fuzzy Condition>

WITH CALIBRATION [klalk,a];

The answer set of this query is the fuzzy set of rows with
projected attributes of the SELECT clause in the Cartesian
product of the relations in the FROM clause that satisfy the
fuzzy condition in the WHERE clause. Fuzzy condition may
involve user-defined terms, predefined operators and / or
fuzzy sub queries. The (optional) WITH CALIBRATION
clause indicates the best rows choice. Two kinds of
calibration have been proposed:

— Quantitative calibration indicates the choice of top k
answers, according to satisfaction degree.

— Qualitative calibration indicates the choice of answers
whose membership value is greater or equal to the threshold
.

SQIf provides a kind of horizontal quantified queries [23]
which general form is:

SELECT <attributes> FROM <relations>
WHERE Q(fcl, .., fcn)

WITH CALIBRATION [k|alk,a];

Being Q a fuzzy quantifier, and f¢,,..,fc, a list of fuzzy
conditions. This query returns the fuzzy relation Rfon fa /
(FveR / y.A=a) A (u(Q(X1))> t) }, being the membership
degree of each element a. ure(@)= p(Q(X 1)) (the truth degree
of fuzzy quantified sentence Q X’s are £), where
X={1,,..,1c,), 1y is a fuzzy predicate on X whose satisfaction
degree is us(1c)=1¢(y) (the satisfaction degree of the row yto
the fuzzy condition #). The sentence Q X’s are fy is
interpreted with the Yager’s decomposition interpretation
[26][23]. The satisfaction degree of this sentence is
H(QUXE) = sup(min(uoli)pis:)) being ug; the i-th higher
value of the () degrees.

III. Fuzzy TERMS

We would like to provide user with fuzzy querying
capabilities in XPath expressions. In this sense, we must to
allow the specification of user defined linguistic terms in
order to be used in querying. In our fuzzy logic based
extension, the allowed linguistic terms are predicates,
modifiers, comparators, connectors and quantifiers. The
general schema for fuzzy term specification is given in Table
1. We specify fuzzy terms through XML using the XML
Schema language.

30 Revista Avances en Sistemas e Informatica, Vol.4 No. 3, Medellin, Diciembre de 2007, ISSN 1657-7663

Table 1. XML SCHEMA FOR FUZzY TERMS

<xsd:complexType name="“xsd:term”>
<xsd:all>
<xsd:group ref=“xsd:predicate”/>
<xsd:group ref=“xsd:modifier”/>
<xsd:group ref=“xsd:comparator”/>
<xsd:group ref=“xsd:connector”/>
<xsd:group ref=“xsd:quantifier”/>
</xsd:all>
</xsd:complexType>

A Fuzzy Predicates

The XML Schema for the fuzzy predicate definition is
shown in Table 2. A fuzzy predicate is specified with a name,
a domain and the membership function of the fuzzy set
defining the predicate. This function that may be of three
kinds: trapezium, extension and arithmetic expression.

Table 2. XML SCHEMA FOR FUZZY PREDICATE

<xsd:group name=“xsd:predicate”>
<xsd:sequence>
<xsd:attribute name=“name” type=“xsd:ID”/>

<xsd:element name=“domain”
type=“xsd:string” />

<xsd:choice>
<xsd:group ref=“xsd:trapezium”/>
<xsd:group ref=“xsd:single extension”
minOccurs="0"” maxOccurs=“unbounded”/>

<xsd:element name=“expression”
type=“xsd:string” />

</xsd:choice>
</xsd:sequence>

</xsd:group>

A trapezium shape membership function is described by
the sequence of its four inflection points x-values: x1, x2, x3
and x4. The specification of membership function in XML
Schema is given in Table 3. The semantics is as follows: The
first is where the function begins to growth form zero to one,
the second is the first point in which the function raise the
degree one, between these two points the satisfaction degree
increases in straight line, between second and third point, the
function gives the constant satisfaction degree one, the fourth
point is where the element becomes completely excluded,
between the third and the fourth, the satisfaction degree
decreases proportionally.

Table 2. XML SCHEMA FOR TRAPEZIUM SHAPE MEMBERSHIP FUNCTION

<xsd:group name=“xsd:trapezium”>
<xsd:sequence>
<xsd:element name=“x1"” type=“xsd:decimal”/>
<xsd:element name=“x2” type=“xsd:decimal”/>
<xsd:element name=“x3" type=“xsd:decimal”/>
<xsd:element name=“x4" type=“xsd:decimal”/>
</xsd:sequence>

</xsd:group>

A membership function defined by extension is specified
giving a list of elements with their satisfaction degrees.
Elements with membership zero are completely excluded of
the fuzzy set; therefore, user may omit them in the extension
specification. Any element out of the specified list is intended
to have satisfaction degree zero. The specification of
membership function in XML Schema is given in Table 4.

When the membership function is defined by an arithmetic
expression, user just gives the expression using the predefined
variable x intended for an element in the domain of the fuzzy
predicate.

Table 4. XML SCHEMA FOR MEMBERSHIP FUNCTION DEFINED BY EXTENSION

<xsd:group name=“xsd:single extension”>
<xsd:sequence>

<xsd:element name=“value”
type=“xsd:string” />

<xsd:element name=“degree”>
<xsd:simpleType>
<xsd:restriction se=“xsd:decimal”>
<xsd:minInclusive value=“0"/>
<xsd:maxInclusive value=“1"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>

</xsd:group>

Table 5 gives an example of user-defined fuzzy predicates
with trapezium shape membership function.

Table 5. XML DOCUMENT EXAMPLE FOR FUZZY PREDICATES

<predicate name = “aprox 34 years”>
<domain> integer</domain>
<trapezium> <x1> 30 </x1> <x2> 32 </x2>
<x3> 36 </x3><x4> 38 </x4>
</trapezium>
</predicate>

B. Fuzzy Modifiers

The XML Schema for a fuzzy modifier is shown in Table
6. This schema includes an identifier name attribute and an

Un Nuevo Paso hacia XQuery Flexible - Goncalves y Tineo 31

expression. This name and this expression define the fuzzy
modifier. The expression tells how the modifier alters the
degree of an element given a fuzzy predicate.

As an example, let’s very be a fuzzy modifier that
intensifies the application of a predicate. This modifier would
be is defined as the square power of the degree. Table 7
contains a XML document for the definition of this modifier.

Table 6. XML SCHEMA FOR FUZZY MODIFIERS

<xsd:group name=“xsd:modifier”>
<xsd:sequence>
<xsd:attribute name=“name” type=“xsd:ID”/>
<xsd:element name=“expression”
type=“xsd:string”/>
</xsd:sequence>
</xsd:group>

Table 7. XML DOCUMENT EXAMPLE FOR FUZZY MODIFIER “VERY”

<modifier name="very”>
<expression> power 2 </expression>

</modifier>

Table 8. XML SCHEMA FOR FUZZy COMPARATORS
<xsd:group name=“xsd:comparator”>

<xsd:sequence>
<xsd:attribute name=“name” type=“xsd:ID”/>
<xsd:element name=“domain”
type=“xsd:string” />
<xsd:choice>
<xsd:sequence>
<xsd:element name=“type”><xsd:simpleType>
<xsd:restriction base=xsd:string”>
<xsd:enumeration value=“difference”/>
<xsd:enumeration value=“quotient”/>
</xsd:restriction>
</xsd:simpleType></xsd:element>
<xsd:group ref=“xsd:trapezium”/>
</xsd:sequence>
<xsd:element name=“expression”
type=“xsd:string” />
<xsd:group ref=“xsd:pair extension”

minOccurs="0"
maxOccurs="unbounded” />

</xsd:choice>
</xsd:sequence>
</xsd:group>

C. Fuzzy Comparators

We propose three kind of fuzzy comparators definition by:

— A fuzzy set over the quotient of compared numbers

— A fuzzy set over the difference of compared numbers

— Extension, indicating the satisfaction degree of related
pairs.

The XML Schema for a fuzzy comparator is like that of
Table 8. This definition contains a name attribute, the type of
comparison and a type of membership function. Fuzzy
comparators membership functions defined by extension are
specified with the XML Schema of Table 9.

Table 9. XML SCHEMA FOR MEMBERSHIP FUNCTION BY EXTENSION ON PAIRS

<xsd:group name=“xsd:pair extension”>
<xsd:sequence>

<xsd:element name=“valuel”
type=“xsd:string” />

<xsd:element name=“value2”
type=“xsd:string” />

<xsd:element name=“degree”>
<xsd:simpleType>
<xsd:restriction base=“xsd:decimal”>
<xsd:minInclusive value=“0"/>
<xsd:maxInclusive value=“1"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>

</xsd:group>

Let’s see an example of fuzzy comparator definition. XML
document of Table 10 defines the “>>>” comparator,
intended as “much greater than” comparison, defined in
terms of quotient membership degree to a fuzzy set.

Table 10. XML DOCUMENT DEFINING FUZZY COMPARATOR ““>>>"

<comparator name=">>>">
<type>quotient <type/>
<trapezium>
<x1> 1 </x1> <x2> 10 </x2>
<x3> infinit </x3> <x4> infinit </x4>
</trapezium>

</comparator>

D. Fuzzy Connectors

Negation, conjunction and disjunction are built in
connector. Their interpretations are complement to unit, max
and the min, respectively. User may define own connectors.
Table 11 shows the XML Schema for fuzzy connectors
definition. It consists of an identifier name attribute and an
expression. The expression tells how the connector combines
the satisfaction degree of operands fuzzy conditions.

Table 12 exemplifies a connector definition: The
“implication” connector defined by the logic equivalence
(A—>B) = (—AVB), that is the expression “max(1-x,y)”. Here
x and y are interpreted as the satisfaction degree of left and
right arguments of the connector, respectively.

32 Revista Avances en Sistemas e Informatica, Vol.4 No. 3, Medellin, Diciembre de 2007, ISSN 1657-7663

Table 11. XML SCHEMA FOR CONNECTORS DEFINITION

<Xsd:group name=%“xsd:connector”>
<xsd:sequence>
<xsd:attribute name=“name” type=“xsd:id”/>

<xsd:element name=“expression”
type=“xsd:string” />

</xsd:sequence>

</xsd:group>

Table 12. XML DOCUMENT EXAMPLE FOR FUZZY CONNECTOR “IMPLIES”

<connector name="implies”>
<expression>max (l-x,y)</expression>

</connector>

E. Fuzzy Quantifiers

The schema is given in Table 13 is intended for define a
fuzzy quantifier. A fuzzy quantifier definition expressed in
XML Schema contains a name attribute, the type of quantifier
and a trapezium that defines the fuzzy quantifier.

Table 13. XML SCHEMA FOR DEFINITION OF FUZZY QUANTIFIERS

<xsd:group name=“xsd:connector”>
<xsd:sequence>

<xsd:attribute name=“name”
type=“xsd:ID”/>

<xsd:element name=“type”>
<xsd:simpleType>
<xsd:restriction base=xsd:string”>

<xsd:enumeration
value=“absolute”/>

<xsd:enumeration
value=“proportional”/>

</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:group ref=“xsd:trapezium”/>
</xsd:sequence >

</xsd:group>

Two types of fuzzy quantifiers are distinguished [24][30]:
— Absolute quantifiers represent amounts that are absolute in
nature such as "about 5" or "more than 20". An absolute
quantifier is represented by a fuzzy subset Q of real numbers.
— Proportional quantifiers are those as "at least half" or
"most of' that are proportional in nature. They can be
represented by fuzzy subsets of the unit interval, [0,1].

Table 14 presents a XML document for a user given
definition of “at_least 3” absolute fuzzy quantifier.

Table 14. XML DOCUMENT WITH FUZZY QUANTIFIER “AT_LEAST_3”

<quantifier name="at_least_ 3">
<type>absolute </type>
<trapezium>
<x1>0</x1> <x2>5</x2>
<x3>infinit</x3> <x4>infinit</x4>
</trapezium>

</quantifier >

IV. Fuzzy PATH EXPRESSIONS

XQuery language uses path expressions in order to select
nodes (or subsets) in XML document. These path expressions
look very similar to the expressions you see when you work
with a traditional computer file system [28]. For example,
author/address [@type="email'] expression returns authors
where each of author addresses must have an attribute called
"type" with the value "email".

Braga et al. [4] allow to use some built-in fuzzy predicates
on attributes and tag names. In the tag name case, they
suppose the existence of the tagname() expression that
extracts the name of a tag in a XML document.

We propose to specify complex fuzzy conditions over tags
and attributes. These conditions would involve user defined
fuzzy terms as those presented in previous section. Hereafter
we present these extensions by means of some representative
examples. We do not go on details about XPath syntax, we
assume reader to be familiar with it, otherwise see [26][28].

The result of a fuzzy path expression is a XML document
where root nodes are presented in decreasing order of their
satisfaction degree to the fuzzy condition. Such degrees are
kept as special nodes attributes.

As an example, let’s consider the XML document in Table
XV and the following user requirement: “Search for
employees with very high level studies”. Let’s assume that
user define “very” fuzzy modifier as in Table 7 and
“high level® fuzzy predicate in Table 5. A fuzzy path
expression representing this user requirement could be:
//employee[studies= very highileve].jjlm query returns
the XML document in Table 16. We can see the satisfaction
degree of the retrieved items obtained form the application of
the modified fuzzy predicate. Only items with non zero
satisfaction degree are retrieved.

Let’s see another example. We search for employees in the
XML document of Table 15 that meet at least three of the
criteria: be young, tall, and heavy, of a high level study and
with a regular salary. Want only elements over the threshold

0.5. This query is expressed as: //employee [at least 3 (
age = young, height = tall, weight = heavy, studies
= high level, salary = regular)] with calibration

0.5. In this case, at_least 3 is a user defined fuzzy quantifier
(as in Table 14). Terms “young”, “tall”, ‘“heavy”,
“high_level” and “regular” are user defined fuzzy predicates
by means of XML in Table 5. Semantics of this query is the

Un Nuevo Paso hacia XQuery Flexible - Goncalves y Tineo 33

same of SQLf horizontal quatification, explained above. The
result is shown in Table 17. Observe that retrieved items are
listed in decreasing order of satisfaction degree.

Table 15. XML DOCUMENT WITH EMPLOYEES INFORMATION

<employee> <name> Cri Sto </name>
<age> 33 </age><height> 200 </height>
<weight> 77 </weight>
<studies> 5 </studies><salary> 1500 </salary>
</employee>
<employee> <name> Kal Hil </name>
<age> 33 </age><height> 183 </height>
<weight> 92 </weight><studies> 1 </studies>
<salary> 500 </salary>
</employee>
<employee> <name> Ken Cha </name>
<age> 36 </age><height> 171 </height>
<weight> 90 </weight>
<studies> 4 </studies><salary> 1250 </salary>
</employee>
<employee> <name> Leo Tin </name>
<age> 37 </age><height> 180 </height>
<weight> 80 </weight><studies> 2 </studies>
<salary> 850 </salary>
</employee>
<employee> <name> Rod Bin </name>
<age> 34 </age><height> 192 </height>
<weight> 120 </weight>
<studies> 1 </studies><salary> 500 </salary>
</employee>

Table 16. XML DOCUMENT WITH FUZZY EMPLOYEES INFORMATION

<employee degree=0.5625>
<name> Cri Sto </name> <age> 33 </age>
<height> 200 </height>
<weight> 77 </weight>
<studies> 5 </studies>
<salary> 1500 </salary>
</employee>
<employee degree=0.2500>
<name> Ken Cha </name> <age> 36 </age>
<height> 171 </height>
<weight> 90 </weight>
<studies> 4 </studies>
<salary> 1250 </salary>
</employee>

Table 17. XML DOCUMENT WITH FUZZY EMPLOYEES INFORMATION

<employee degree=1.0>
<name> Cri Sto </name> <age> 33 </age>
<height> 200 </height>
<weight> 77 </weight>
<studies> 5 </studies>
<salary> 1500 </salary>
</employee>
<employee degree=0.6>
<name> Rod Bin </name> <age> 34 </age>
<height> 192 </height>
<weight> 120 </weight>
<studies> 1 </studies>
<salary> 500 </salary>
</employee>
<employee degree=0.5>
<name> Ken Cha </name> <age> 36 </age>
<height> 171 </height>
<weight> 90 </weight>
<studies> 4 </studies>
<salary> 1250 </salary>
</employee>

V. CONCLUSION

Traditional querying languages suffer of rigidity, in the
sense that fail in express user preferences and give
discriminated answers. Despite expressive power XML
querying languages, they also present this problem.

In this paper we have deal with the problem of giving more
flexibility to XQuery by means of fuzzy logic use. As a step
for the XQuery extension, we have focus our attention to
XPath expressions. These expressions are the basis for
XQuery. We have presented here the syntax and semantics of
an XPath extension with fuzzy logic conditions involving
user defined linguistic terms.

Main feature of our proposal is that it allows a large variety
of fuzzy criteria expression using linguistic predicates,
modifiers, comparators, connectors and quantifiers. We have
presented XML Schema intended for these terms
specification.

The result of a fuzzy path expression is a XML document
where root nodes are presented in decreasing order of their
satisfaction degree to the fuzzy condition. Such degrees are
kept as special nodes attributes.

Next step would be the integration of satisfaction degrees
in more complex queries that might be specified in XQuery.
In a future work we will propose a fuzzy join and the use of
fuzzy quantifiers in partitioning and nesting.

Finally, another interesting step would be to use fuzzy logic
for answering ontology queries for the Semantic Web. We
work at present time in this way. We hope in a near future to
have a contribution in this field.

ACKNOWLEDGMENT

This work was supported in part by the Venezuela
Foundation for Science, Innovation and Technology

34 Revista Avances en Sistemas e Informatica, Vol.4 No. 3, Medellin, Diciembre de 2007, ISSN 1657-7663

FONACIT Grant G-2005000278.

There is a very special person that has inspired our lives
and our works. Therefore, we would like to express a great
acknowledgment to this person. All the things that we do, we
do them by this person and without this person nothing we
could do. This person is the King of Kings and Lord of Lords,
the Savior for all human being: Jesus Christ.

REFERENCES

[1] Aguilera, A.; Subero, A.; Tineo, L. "Similarity-Based Queries for
Information Retrieval". Lecture Notes in Computer Science, 1966, DNIS
2000, Pp. 148-156.

[2] S. Amer-Yahia, C. Botev, S.Buxton, P. Case, J. Doerre, D. McBeath, M.
Rys, J. Shanmugasundaram, “XQuery 1.0 and XPath 2.0 Full-Text” W3C
Working Draft 3 November 2005, www.w3.org/TR/xquery-full-text

[3] P. Bosc, O. Pivert, “SQLf: A Relational Database Language for Fuzzy
Querying”, IEEE Transactions on Fuzzy Systems, Vol 3, No. 1, Feb 1995

[4] D. Braga, A. Campi, E. Damiani, G. Pasi, PL. Lanzi, “FXPath: Flexible
Querying of XML Documents”, Proc. of EuroFuse 2002, Varenna, Italy,
September 2002

[S] E. Cox “Relational Database Queries using Fuzzy Logic”, Artificial
Intelligent Expert, pp 23-29,Jan 1995.

[6] F. Crestani and G. Pasi, "Soft Information Retrieval: Applications of Fuzzy
Set Theory and Neural Networks", Neuro-fuzzy tools and techniques,
N.Kasabov Editor, Physica-Verlag, Springer-Verlag Group, pp. 287-313,
1999.

[7]1 Extensible Markup Language
http://www.w3.org/XML/. 2007

[8] S. Fukami and M. Umano. “Fuzzy Relational Algebra for Possibility-
Distribution-Fuzzy-Relational Model of Fuzzy Data”, Journal of
Intelligent Information System, Vol 3, pp 7-27, 1994.

[9] J. Galindo, "New Characteristics in FSQL, a Fuzzy SQL for Fuzzy
Databases". WSEAS Transactions on Information Science and
Applications 2, Vol. 2, pp. 161-169, February 2005

[10] J. Galindo, A. Urrutia, and M. Piattini, “Fuzzy Database Modeling, Design
and Implementation”, Idea Group Publishing, 2006

[11] M. Goncalves and L. Tineo, “SQLf Flexible Querying Language
Extension by means of the norm SQL2”, The 10th IEEE International
Conference on Fuzzy Systems, Vol 1, Dec 2001.

[12] M. Goncalves and L. Tineo, “SQLf3: An extension of SQLf with SQL3
features”, The 10th IEEE International Conference on Fuzzy Systems, Vol
3, Dec 2001.

[13] M. Goncalves and L. Tineo, "A Web Tool for Web Document and Data
Source Selection with SQLfi". Proceedings of the 9th International
Conference on Enterprise Information Systems (ICEIS-2007). Madeira,
Portugal. June 2007.

[14] M. Goncalves and L. Tineo, "The Egloo Fuzzy Web Data Source Selection
Tool". Proceedings of DEXA 2007 Workshops, 2nd International
Workshop on Flexible Database and Information System Technology -
FlexDBIST . Regensburg, Germany. August 2007.

[15] E. Herrera-Viedma, A.G. Lopez-Herrera, M. Luque and C. Porcel., “A
Fuzzy Linguistic IRS Model Based on a 2-Tuple Fuzzy Linguistic
Approach”, International Journal of Uncertainty, Fuzziness and
Knowledge-based Systems. In press, 2007.

[16] W-S.Hong, S-J. Chen, L-H. Wang, S-M. Chen, “A new approach for fuzzy
information retrieval based on weighted power-mean averaging operators”,
Computers & Mathematics with Applications, v.53 n.12, p.1800-1819,
June 2007.

[17] J. Kacpryzyk, S. Zadrozny, “Fuzzy Queries in Microsoft AccessTM v.2”,
Proc. of Fuzzy IEEE’95 Workshop on Fuzzy Database Systems and
Information Retrieval, 1995.

[18] H. Nakajima, T. Sogoh, M. Arao, “Fuzzy Database Language and
Library-Fuzzy Extension to SQL”, Proc. of Second IEEE International
Conference on Fuzzy Systems, 1983.

(XML). Available at

[19] K. Lee and G. Loo. “An Interface to Databases for Flexible Query
Answering: A Fuzzy-Set Approach”. Lecture Notes in Computer Science
1873. DEXA 2000.

[20] ZM. Ma and Li Yan, “Generalization of Strategies for Fuzzy Query
Translation in Classical Relational Databases. Information and Software
Technology, Volume 49, Issue 2, February 2007.

[21] J. Medina, M. A. Vila, O. Pons. “GEFRED: A Generalized Model of
Fuzzy Relational Databases,” Informatizan Sciences, 1993

[22] H. Nakajima, T. Sogoh and M. Arao. “Fuzzy Database Language and
Library-Fuzzy Extension to SQL”, Proceedings of Second IEEE
International Conference on Fuzzy Systems, pp 477-482, 1983.

[23] The XML Data Model. Available at
http://www.w3.org/XML/Datamodel.html. 2005.

[24] L. Tineo, “A Contribution to Database Flexible Querying: Fuzzy
Quantified Queries Evaluation”, Doctoral Thesis, Universidad Simoén
Bolivar, Caracas, Venezuela, 2006.

[25] V. Rijsbergen, C.J. Information Retrieval. Butterworths, London, second
edition, 1979.

[26] XML Path Language
http://www.w3.org/TR/xpath20. 2007

[27] XML Schema. Available at http://www.w3.org/XML/Schema. 2007.

[28] XPath Introduction. Available at
http://www.w3schools.com/xpath/xpath_intro.asp. 2007.

[29] XQuery 1.0: An XML Query Language.
http://www.w3.org/TR/xquery/. 2007

[30] R. Yager, Interpreting Linguistically Quantified Propositions, International
Journal of Intelligent Systems, Vol. 9, (1994).

[31] M. Wong and K. Leung. “A fuzzy Database-Query Language”.
Information Systems. Vol 15. No. 5, pp 583-590, 1990.

[32] L.A.Zadeh, “Fuzzy sets”. Information and Control 8, (1965).

(XPath). Available at

Available at

Leonid Tineo (Caracas Venezuela, 1968). PhD in Computing, Universidad
Simon Bolivar, Caracas, Venezuela, 2006. MsC in Computer Science,
Universidad Simén Bolivar, Caracas, Venezuela, 1992. Eng. in Computing,
Universidad Simoén Bolivar, Caracas, Venezuela, 1990.

He is Titular Professor (since 2007), Staff Member of Universidad Simon
Bolivar (since 1991). He has an Accreditation Venezuelan Investigator
Promotion Program as Researcher Level 1 (since 2003). He has received the
distinctions: Outstanding Professor CONABA (2002), Outstanding Educational
Work USB (1999). He is the Coordinator of the Investigation and Development
Group in Databases of the Universidad Simén Bolivar (since 2002). He has
exerted the post of Information and Integration Coordinator of the Research and
Development Deanship at Universidad Simén Bolivar (since 2002 until 2007).
In the area of Fuzzy Databases, he has more than twenty articles in extenso in
arbitrated Proceedings, more than fifteen published brief notes, tree papers in
indexed journals, one book chapter and more than fifteen advisories of works
conducing to academic titles. He is the responsible of the project “Creation and
Application of Fuzzy Databases Management Systems” supported by FONACIT
(since 2006).

Marlene Goncalves MsC in Computer Science, Universidad Simén Bolivar,
Caracas, Venezuela, 2002. Lic. in Computing, Universidad Central de
Venezuela, Caracas, Venezuela, 1998.

She is Aggregated Professor (since 2005), Staff Member of Universidad
Simén Bolivar (since 2001). She has an Accreditation Venezuelan Investigator
Promotion Program as Researcher Level 1 (since 2007). She has received the
distinction Outstanding Professor CONABA (2002), She is the Chief the
Investigation and Development Laboratory in Databases of the Universidad
Simén Bolivar (since 2006). In the area of Preference Management for
Databases, she has more than ten articles in extenso in arbitrated Proceedings,
more than five published brief notes, tree papers in indexed journals and more
than ten advisories of works conducing to academic titles. She is the co-
responsible of the project “Creation and Application of Fuzzy Databases
Management Systems” supported by FONACIT (since 2006).

