Publicado

2016-02-01

¿Están los CLC de Leishmania asociados con la adaptación del parásito a cambios de pH y/o de osmolaridad?

Are the Leishmania CLC Associated with Parasite Adaptation to pH and/or Osmolarity Changes?

DOI:

https://doi.org/10.15446/abc.v21n1Supl.50591

Palabras clave:

canal de cloruro CLC, Leishmania, osmolaridad, pH, proteína CLC. (es)
CLC chloride channel, CLC protein, Leishmania, Osmolarity, pH (en)

Autores/as

  • Marcela Camacho Navarro Universidad Nacional de Colombia.
  • Yenny Lozano Universidad Nacional de Colombia

Leishmania es un protozoario patógeno, que transita durante su ciclo de vida desde el intestino de su vector hasta un compartimiento fagolisosomal al interior de su célula hospedera, el macrófago. Durante este recorrido el parásito está expuesto a ambientes que cambian en temperatura, pH y presumiblemente osmolaridad. Para su supervivencia, Leishmania debe hacer ajustes para adaptarse y la expresión de canales de cloruro ha sido implicada en estos. Basándose en los antecedentes de nuestro grupo de investigación, que registró corrientes de cloruro voltaje dependientes luego de la inyección de mRNA de promastigotes de Leishmania en ovocitos de Xenopues laevis, se postula que éstas son el resultado de la actividad de proteínas CLC. Se mencionan algunas bases moleculares de la adaptación de este párasito con énfasis en transportadores, regulación de calcio, pH y osmolaridad. Con base en datos del grupo se argumenta que la osmolaridad de la vacuola parasitófora es alta. Además se da evidencia de la transcripción en promastigotes de tres genes que codificarían CLC putativos, y se postulan funciones potenciales que llevarían a cabo en los dos estadios del parásito.

Leishmania is a protozoan pathogen that transits during its lifecycle from the gut of the vector to a phagolysosomal compartment within its host cell, the macrophage. During this journey, the parasite is exposed to environments that change in temperature, pH and osmolarity. For their survival, Leishmania must make adjustments to adapt and expression of chloride channels has been involved in these. Based on our research group results: reported voltage-dependent chloride currents after mRNA injection of promastigotes of Leishmania in Xenopus laevis oocytes, it is postulated that these are the result of CLC protein activity. Some molecular bases of adaptation of this parasite are mentioned with emphasis on regulation of calcium, pH and osmolarity. Based on data from our group it is argued that the osmolarity of the parasitophorous vacuole is high. In addition, evidence of the transcription in promastigotes of three genes that encode putative CLC is given and potential functions that take place in the two stages of the parasite are postulated.

Referencias

Accardi A, Miller C. Secondary active transport mediated by a prokaryotic homologue of ClC Cl- channels. Nature. 2004;427(6977):795-797. Doi:10.1038/nature02314

Accardi A, Kolmakova-Partensky L, Williams C, Miller C. Ionic currents mediated by a prokaryotic homologue of CLC Cl- channels. J Gen Physiol. 2004;123(2):109-119. Doi:10.1085/jgp.200509417

Almeida-Campos FR, Castro-Gomes T, Machado-Silva A, de Oliveira JS, Santoro MM, Frézard F, et al. Activation of Leishmania spp. leishporin: evidence that dissociation of an inhibitor not only improves its lipid-binding efficiency but also endows it with the ability to form pores. Parasitol Res. 2013;112(9):3305-3314. Doi:10.1007/s00436-013-3510-4.

Antoine Jc, Prina E, Jouanne C, Bongrand P. Parasitophorous vacuoles of Leishmania amazonensis-infected macrophages maintain an acidic pH. Infect Immun. 1990;58(3):779-787.

Arroyo R. Expresión heteróloga de ARNm poli(A)+ de Leishmania (Trypanosomatidae) en ovocitos de anfibio (Bufonidae). (Trabajo de grado). Biología, Facultad de Ciencias, Universidad Nacional de Colombia; 2005. 45 p.

Atayde VD, Ullu E, Kolev NG. A single-cloning-step procedure for the generation of RNAi plasmids producing long stem-loop RNA. Mol Biochem Parasitol. 2012;184(1):55-58. Doi:10.1016/j.molbiopara.2012.04.003

Bañuls A-L, Mallorie H, Prugnolle F. Leishmania and the leishmaniases: a parasite genetic update and advances in taxonomy, epidemiology and pathogenicity in humans. Adv Parasitol. 2007;64:1-109. Doi: 10.1016/S0065-308X(06)64001-3

Benaim G, Szabo V, Cornivelli L. Isolation and characterization of calmodulin from Leishmania braziliensis and Leishmania mexicana. Acta Cient Venez. 1987;38(2):289-291.

Benaim G, Romero PJ. A calcium pump in plasma membrane vesicles from Leishmania braziliensis. Biochim Biophys Acta. 1990;1027(1):79-84. Doi:10.1016/0005-2736(90)90051-O

Benaim G, Bermudez R, Urbina JA. Ca2+ transport in isolated mitochondrial vesicles from Leishmania braziliensis promastigotes. Mol Biochem Parasitol. 1990;39(1):61-8. Doi:10.1016/0166-6851(90)90008-A

Benaim G. Intracellular calcium homeostasis. Calmodulin and Ca(2+)-ATPase of the plasma membrane of Trypanosomatids. Acta Cient Venez. 1993;44(2):57-66.

Benaim G, García-Marchán Y, Reyes C, Uzcanga G, Figarella K. Identification of a sphingosine-sensitive Ca2+ channel in the plasma membrane of Leishmania mexicana. Biochem Biophys Res Commun. 2013;430(3):1091-1096. Doi:10.1016/j.bbrc.2012.12.033.

Bergsdorf EY, Zdebik AA, Jentsch TJ. Residues important for nitrate/proton coupling in plant and mammalian CLC transporters. J Biol Chem. 2009;284:11184-11193. Doi:10.1074/jbc.M901170200

Blast. Available from: http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastHome

Braun NA, Morgan B, Dick TP, Schwappach B. The yeast CLC protein counteracts vesicular acidification during iron starvation. J Cell Sci. 2010;123:2342-2350. Doi:10.1242/jcs.068403

Camacho M. Electrical membrane properties in the model Leishmania-macrophage. Chapter 10. In: Patch Clamp Technique. Shad Kaneez Fatima, editor. Darussalam, Pakistan: PAP RSB Institute of Health Sciences, University Brunei; 2012. p. 203-230.

Carreño M. Cuantificación de la expresión del canal de cloruro Lbrm01_v2.0210 y de los canales ClC putativos Lbrm32v2.3670, Lbrm33_v2.1260 y Lbrm04_v2.1010 en promastigotes y amastigotes de L.braziliensis.¬ (Tesis Maestría en Bioquímica). Bogotá: Facultad de Ciencias, Universidad Nacional de Colombia; 2015. p. 43-49.

Cortázar TM, Hernández J, Echeverry MC, Camacho M. Role of the parasitophorous vacuole of murine macrophages infected with Leishmania amazonensis in molecule acquisition. Biomedica. 2006;Suppl-1:26-37.

Corte-Real S, Santos CB, Meirelles MN. Differential expression of the plasma membrane Mg2+ ATPase and Ca2+ ATPase activity during adhesion and interiorization of Leishmania amazonensis in fibroblasts in vitro. J Submicrosc Cytol Pathol. 1995;27(3):359-366.

Chaves H, Villalba C, Lagos L, Vargas R, Martínez-Wittinghan F, Clavijo C, et al. Expresión de canales de potasio voltaje dependientes en ovocitos de Xenopus laevis (amphibia) Acta biol Colomb. 2003;8(1):59-67.

Chen TY, Miller C. Nonequilibrium gating and voltage dependence of the ClC-0 Cl- channel. J Gen Physiol. 1996;108(4):237-250. Doi:10.1085/jgp.108.4.237

Darling T N, Burrows CM, Blum JJ. Rapid shape change and release of ninhydrin-positive substances by Leishmania major promastigotes in response to hypo-osmotic stress. J Protozool. 1990;37:493-499. Doi:10.1111/j.1550-7408.1990.tb01254.x

Davis-Kaplan SR, Askwith CC, Bengtzen AC, Radisky D, Kaplan J. Chloride is an allosteric effector of copper assembly for the yeast multicopper oxidase Fet3p: an unexpected role for intracellular chloride channels. Proc Natl Acad Sci USA. 1998;95:13641-13645. Doi:10.1073/pnas.95.23.13641

De Angeli A, Monachello D, Ephritikhine G, Frachisse JM, Thomine S, Gambale F, Barbier-Brygoo H. The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles. Nature. 2006;442(7105):939-942. Doi:10.1038/nature05013

DiFranco M, Villarroel A, Ponte-Sucre A, Quinonez M, Drujan D, Dagger F. Incorporation of ion channels from the plasma membrane of Leishmania mexicana into planar bilayers. Acta Cient Venez. 1995;46(3):206-207.

Docampo R, de Souza W, Miranda K, Rohloff P, Moreno SN. Acidocalcisomes - conserved from bacteria to man. Nat Rev Microbiol. 2005;3(3):251-261. Doi:10.1038/nrmicro1097

Dutzler R, Campbell EB, Cadene M, Chait BT, Mackinnon R. X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature. 2002;415:287-294. Doi:10.1038/415287a

Dutzler R, Campbell EB, MacKinnon R. Gating the selectivity filter in ClC chloride channels. Science. 2003;300(5616):108-112. Doi:10.1126/science.1082708

Estévez R, Pusch M, Ferrer-Costa C, Orozoco M, Jentsch TJ. Functional and structural conservation of CBS domains from CLC channels. J Physiol. 2004;557:363-378.

Figarella K, Uzcategui NL, Zhou Y, LeFurgey A, Ouellette M, Bhattacharjee H, et al. Biochemical characterization of Leishmania major aquaglyceroporin LmAQP1: possible role in volume regulation and osmotaxis. Mol Microbiol. 2007;65(4):1006-1017. Doi:10.1111/j.1365-2958.2007.05845.x

Garzón C, Stuhmer W, Camacho M. Corrientes aniónicas de Leishmania expresadas en ovocitos de Xenopus laevis luego de la inyección de mRNA. Biomédica. 2009;29(S)177-178.

Gaxiola RA, Yuan DS, Klausner RD, Fink GR. The yeast CLC chloride channel functions in cation homeostasis. Proc Natl Acad Sci USA. 1998;95:4046-4050.

Glaser TA, Mukkada AJ. Proline transport in Leishmania donovani amastigotes: dependence on pH gradients and membrane potential. Mol Biochem Parasitol. 1992;51(1):1-8. Doi:10.1016/0166-6851(92)90194-O

Gourbal B, Sonuc N, Bhattacharjee H, Legare D, Sundar S, Ouellette M, Rosen BP, Mukhopadhyay R. Drug uptake and modulation of drug resistance in Leishmania by an aquaglyceroporin. J Biol Chem. 2004;279(30):31010-31017. Doi:10.1074/jbc.M403959200

Hille B. Ion channels of excitable membranes. Third edition. Sinauer Associates; 2001. p. 1-19.

Hodgkin AL, Huxley AF. Resting and action potentials in single nerve fibres. J Physiol. 1945;104(2):176-195. Doi:10.1113/jphysiol.1945.sp004114

Hodgkin AL, Huxley AF. Potassium leakage from an active nerve fibre. J Physiol. 1947;106(3):341-367. Doi:10.1113/jphysiol.1947.sp004216

Hoffmann EK, Lambert IH, Pedersen SF. Physiology of cell volume regulation in vertebrates. Physiol Rev. 2009;89(1):193-277. Doi:10.1152/physrev.00037.2007.

Horta MF. Pore-forming proteins in pathogenic protozoan parasites. Trends Microbiol. 1997;5(9):363-366. Doi:10.1016/S0966-842X(97)01109-8

Inbar E, Schlisselberg D, Suter Grotemeyer M, Rentsch D, Zilberstein D. A versatile proline/alanine transporter in the unicellular pathogen Leishmania donovani regulates amino acid homoeostasis and osmotic stress responses. Biochem J. 2013;449(2):555-566. Doi:10.1042/BJ20121262.

Jentsch TJ, Stein V, Weinreich F, Zdebik AA. Molecular structure and physiological function of chloride channels. Physiol Rev. 2002;82(2):503-568. Doi:10.1152/physrev.00029.2001

Jentsch TJ. Chloride and the endosomal-lysosomal pathway: emerging roles of CLC chloride transporters. J Physiol. 2007;578(Pt 3):633-640. Doi:10.1113/jphysiol.2006.124719

Jentsch TJ. Discovery of CLC transport proteins: cloning, structure, function and pathophysiology. J Physiol. 2015;593(8):4091–4109. Doi:10.1113/jphysiol.2014.270043

Lagos M LF, Moran O, Camacho M. Leishmania amazonensis: Anionic currents expressed in oocytes upon microinjection of mRNA from the parasite. Exp Parasitol. 2007;116(2):163-170. Doi:10.1016/j.exppara.2006.12.010

Läuger P. Electrogenic ion pumps. Sunderland, Massachusetts, USA: Sinauer Associates, Inc.; 1991. p. 1-60.

LeFurgey A, Ingram P, Blum JJ. Compartmental responses to acute osmotic stress in Leishmania major result in rapid loss of Na+ and Cl-. Comp Biochem Physiol A Mol Integr Physiol. 2001;128(2):385-394. Doi:10.1016/S1095-6433(00)00319-6

LeFurgey A, Gannon M, Blum J, Ingram P. Leishmania donovani amastigotes mobilize organic and inorganic osmolytes during regulatory volume decrease. J Eukaryot Microbiol. 2005;52(3):277-289. Doi:10.1111/j.1550-7408.2005.00030.x

Leslie G, Barrett M, Burchmore R. Leishmania mexicana: promastigotes migrate through osmotic gradients. Exp Parasitol. 2002;102(2):117-120. Doi: 10.1016/S0014-4894(03)00031-6

Liew FY, Xu D, Chan WL. Immune effector mechanism in parasitic infections. Immunol Lett. 1999;65(1-2):101-104. Doi: 10.1016/S0165-2478(98)00131-X

Lozano Y, Gomez C, Posada ML, Camacho M. Canales de cloruro CLC de Leishmania. Biomédica. 2009;29(S):184.

Lozano Y. Estudio de un canal de cloruro de Leishmania y su importancia en la fisiología del parásito (Tesis Doctorado en Farmacia). Bogotá: Facultad de Ciencias, Universidad Nacional de Colombia; 2012. p. 50-53.

Lloyd JB. Lysosome membrane permeability: implications for drug delivery. Adv Drug Deliv Rev. 2000;41(2):189-200.

Lu HG, Zhong L, Chang KP, Docampo R. Intracellular Ca2+ pool content and signaling and expression of a calcium pump are linked to virulence in Leishmania mexicana amazonesis amastigotes. J Biol Chem. 1997;272(14):9464-9473. Doi:10.1074/jbc.272.14.9464

Mandal D, Mukherjee T, Sarkar S, Majumdar S, Bhaduri A. The plasma-membrane Ca2+-ATPase of Leishmania donovani is an extrusion pump for Ca2+. Biochem J. 1997;322(Pt 1):251-257.

Marchesini N, Docampo R. A plasma membrane P-type H(+)-ATPase regulates intracellular pH in Leishmania mexicana amazonensis. Mol Biochem Parasitol. 2002;119(2):225-236. Doi:10.1016/S0166-6851(01)00419-4

Maharjan M, Singh S, Chatterjee M, Madhubala R. Role of aquaglyceroporin (AQP1) gene and drug uptake in antimony-resistant clinical isolates of Leishmania donovani. Am J Trop Med Hyg. 2008;79(1):69-75.

McConville MJ, de Souza D, Saunders E, Likic VA, Naderer T. Living in a phagolysosome; metabolism of Leishmania amastigotes. Trends Parasitol. 2007;23(8):368-375.

Miller C. Open-state substructure of single chloride channels from Torpedo electroplax. Philos Trans R Soc Lond B Biol Sci. 1982;299(1097):401-411. Doi:10.1098/rstb.1982.0140

Miller C. ClC chloride channels viewed through a transporter lens. Nature. 2006;440(7083):484-489. Doi:10.1038/nature04713

Miller C. In the beginning: A personal reminiscence on the origin and legacy of ClC-0, the "Torpedo Cl- channel". J Physiol. 2015;593(18):4085-4090. Doi:10.1113/jphysiol.2014.286260

Miller C, White MM. A voltage-dependent chloride conductance channel from Torpedo electroplax membrane. Ann N Y Acad Sci. 1980;341:534-551. Doi:10.1111/j.1749-6632.1980.tb47197.x

Miller C, Nguitragool W. A provisional transport mechanism for a chloride channel-type Cl-/H+ exchanger. Philos Trans R Soc Lond B Biol Sci. 2009;364(1514):175-180. Doi:10.1098/rstb.2008.0138.

Moreno SN, Docampo R. Calcium regulation in protozoan parasites. Curr Opin Microbiol. 2003;6(4):359-364. Doi:10.1016/S1369-5274(03)00091-2

Moreno SN, Docampo R. The role of acidocalcisome sin parasitic protists. J Eukaryot Microbiol. 2009;56(3):208-213. Doi:10.1111/j.1550-7408.2009.00404.x

Moreno-Galindo EG1, Rodríguez-Elías JC, Ramírez-Herrera MA, Sánchez-Chapula JA, Navarro-Polanco RA. The principal conductance in Giardia lamblia trophozoites possesses functional properties similar to the mammalian ClC-2 current. Pflugers Arch. 2014;466(5):915-924. Doi:10.1007/s00424-013-1350-9.

Navarrete I. Modelo hidrodinámico de la separación de especies celulares en canales finos Step-Splitt (Tesis Maestría en Biofísica). Bogotá: Departamento de Física, Facultad de Ciencias, Universidad Nacional de Colombia; 2013. p. 42-52.

Novarino G, Weinert S, Rickheit G, Jentsch TJ. Endosomal chloride-proton exchange rather than chloride conductance is crucial for renal endocytosis. Science. 2010;328(5984):1398-1401. Doi:10.1126/science.1188070

Noronha FS, Ramalho-Pinto FJ, Horta MF. Identification of a putative pore-forming hemolysin active at acid pH in Leishmania amazonensis. Braz J Med Biol Res 1994;27(2):477-482.

Noronha FS, Ramalho-Pinto FJ, Horta MF. Cytolytic activity in the genus Leishmania: involvement of a putative pore-forming protein. Infect Immun. 1996;64(10):3975-3982.

Ogbunude PO, Dzimiri MM. Expression of a channel-like pathway for adenosine transport in Leishmania donovani promastigotes. Int J Parasitol. 1993;23(6):803-807. Doi:10.1016/0020-7519(93)90078-D

Ouellette M, Legare D, Papadopoulou B. Multidrug resistance and ABC transporters in parasitic protozoa. J Mol Microbiol Biotechnol. 2001;3(2):201-206.

Palade GE. Intracellular Aspects of the Process of Protein Secretion Nobel Lecture; 1974 Available from: http://www.nobelprize.org/nobel_prizes/medicine/laureates/1974/palade-lecture.html

Quintana MP, León S, Forero ME, Camacho M. Mecanismos de salida de su célula hospedera de parásitos intracelulares. Acta biol Colomb. 2010;15(3):19-32.

Quintero N. Estudio funcional de un canal de cloruro de Leishmania (LbrM32_V2.3670), caracterización electrofisiológica y molecular. (Tesis Maestría en Biología). Bogotá: Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia; 2013. p. 28-31.

Parada O. Estudio funcional de un canal de cloruro de Leishmania (LbrM33 V2.1260). (Tesis Maestría en Bioquímica). Bogotá: Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia; 2014. p. 47-52.

Philosoph H, Zilberstein D. Regulation of intracellular calcium in promastigotes of the human protozoan parasite Leishmania donovani. J Biol Chem. 1989;264(18):10420-10424.

Picollo A, Pusch M. Chloride/proton antiporter activity of mammalian CLC proteins ClC-4 and ClC-5. Nature. 2005;436(7049):420-423. Doi:10.1038/nature03720

Prole DL, Taylor CW. Identification of intracellular and plasma membrane calcium channel homologues in pathogenic parasites. PLoS One. 2011;6(10):e26218. Doi:10.1371/journal.pone.0026218

Prole DL, Marrion NV. Identification of putative potassium channel homologues in pathogenic protozoa. PLoS One. 2012;7(2):e32264. Doi: 10.1371/journal.pone.0032264

Prole DL, Taylor CW. Identification and analysis of putative homologues of mechanosensitive channels in pathogenic protozoa. PLoS One. 2013;8(6):e66068. Doi:10.1371/journal.pone.0066068

Pusch M, Ludewig U, Rehfeldt A, Jentsch TJ. Gating of the voltage-dependent chloride channel CIC-0 by the permeant anion. Nature. 1995;373(6514):527-531. Doi:10.1038/373527a0

Pusch M, Zifarelli G, Murgia AR, Picollo A, Babini E. Channel or transporter? The CLC saga continues. Exp Physiol. 2006;91(1):149-152. Doi:10.1113/expphysiol.2005.031799

Rodrigues CO, Scott DA, Docampo R. Presence of a vacuolar H+-pyrophosphatase in promastigotes of Leishmania donovani and its localization to a different compartment from the vacuolar H+-ATPase. Biochem J. 1999;340(Pt 3):759-766.

Salas-Casas A, Ponce-Balderas A, Garcia-Perez RM, Cortes-Reynosa P, Gamba G, Orozco E, et al. Identification and functional characterization of EhClC-A, an Entamoeba histolytica ClC chloride channel located at plasma membrane. Mol Microbiol. 2006;59:1249-1261. Doi:10.1111/j.1365-2958.2006.05023.x

Santos VC, Araujo RN, Machado LA, Pereira MH, Gontijo NF. The physiology of the midgut of Lutzomyia longipalpis (Lutz and Neiva 1912): pH in different physiological conditions and mechanisms involved in its control. J Exp Biol. 2008;211(Pt 17):2792-2798. Doi: 10.1242/jeb.019836.

Schwappach B, Stobrawa S, Hechenberger M, Steinmeyer K, Jentsch TJ. Golgi localization and functionally important domains in the NH2 and COOH terminus of the yeast CLC putative chloride channel Gef1p. J Biol Chem. 1998;273:15110-15118. Doi:10.1074/jbc.273.24.15110

Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science. 1972;175(4023):720-731. Doi:10.1126/science.175.4023.720

Smith AJ, Schwappach B. Cell biology. Think vesicular chloride. Science. 2010;328(5984):1364-1365. Doi:10.1126/science.1191529

Stockbridge RB, Lim HH, Otten R, Williams C, Shane T, Weinberg Z, Miller C. Fluoride resistance and transport by riboswitch-controlled CLC antiporters. Proc Natl Acad Sci USA. 2012;109(38):15289-15294. Doi:10.1073/pnas.1210896109

Sudhandiran G, Shaha C. Antimonial-induced increase in intracellular Ca2+ through non-selective cation channels in the host and the parasite is responsible for apoptosis of intracellular Leishmania donovani amastigotes. J Biol Chem. 2003;278(27):25120-25132. Doi:10.1074/jbc.M301975200

Tetaud E, Bringaud F, Chabas S, Barrett MP, Baltz T. Characterization of glucose transport and cloning of a hexose transporter gene in Trypanosoma cruzi. Proc Natl Acad Sci USA. 1994;91(17):8278-8282. Doi:10.1111/j.1749-6632.1980.tb47197.x

ter Kulle BH. Glucose and proline transport in kinetoplastids. Parasitol Today. 1993;9(6):206-210. Doi:10.1016/0169-4758(93)90009-5

Vargas R A, Botero L, Lagos L, Camacho M. Bufo marinus oocytes as a model for ion channel protein expression and functional characterization with electrophysiological studies. Cell Physiol Biochem. 2004;14(4-6):197-202. Doi:10.1159/000080327

Vercesi AE, Rodrigues CO, Catisti R, Docampo R. Presence of a Na(+)/H(+) exchanger in acidocalcisomes of Leishmania donovani and their alkalization by anti-leishmanial drugs. FEBS Lett. 2000;473(2):203-206. Doi: 10.1016/S0014-5793(00)01531-3

Vieira LL, Cabantchik ZI. Amino acid uptake and intracellular accumulation in Leishmania major promastigotes are largely determined by an H(+)-pump generated membrane potential. Mol Biochem Parasitol 1995;75(1):15-23. Doi: 10.1016/0166-6851(95)02505-7

Vieira L, Lavan A, Dagger F, Cabantchik ZI. The role of anions in pH regulation of Leishmania major promastigotes. J Biol Chem. 1994;269(23):16254-16259.

Vieira L, Cabantchik ZI. Bicarbonate ions and pH regulation of Leishmania major promastigotes. FEBS Lett. 1995;361(1):123-126. Doi: 10.1016/0014-5793(95)00171-5

Vieira L, Slotki I, Cabantchik ZI. Chloride conductive pathways which support electrogenic H+ pumping by Leishmania major promastigotes. J Biol Chem. 1995;270:5299-5304. Doi:10.1074/jbc.270.10.5299

Vieira LL, Lafuente E, Gamarro F, Cabantchik Z. An amino acid channel activated by hypotonically induced swelling of Leishmania major promastigotes. Biochem J. 1996;319:691-697.

Vieira LL, Lafuente E, Blum J, Cabantchik ZI. Modulation of the swelling-activated amino acid channel of Leishmania major promastigotes by protein kinases. Mol Biochem Parasitol. 1997;90(2):449-61. Doi: 10.1016/S0166-6851(97)00180-1

Warsi J, Elvira B, Hosseinzadeh Z, Shumilina E, Lang F. Downregulation of chloride channel ClC-2 by Janus kinase 3. J Membr Biol. 2014;247(5):387-93. Doi:10.1007/s00232-014-9645-0

Zhang H, Li H, Liu E, Guang Y, Yang L, Mao J, et al. The AQP-3 water channel and the ClC-3 chloride channel coordinate the hypotonicity-induced swelling volume in nasopharyngeal carcinoma cells. Int J Biochem Cell Biol. 2014;57:96-107. Doi:10.1016/j.biocel.2014.10.014

Zifarelli G, Pusch M. Conversion of the 2 Cl-/1 H+ antiporter ClC-5 in a NO3-/H+ antiporter by a single point mutation. EMBO J. 2009;28:175-182. Doi:10.1038/emboj.2008.284.

Zilberstein D, Shapira M. The role of pH and temperature in the development of Leishmania parasites. Annu Rev Microbiol. 1994;48:449-470. Doi: 10.1146/annurev.mi.48.100194.002313

Cómo citar

APA

Camacho Navarro, M. y Lozano, Y. (2016). ¿Están los CLC de Leishmania asociados con la adaptación del parásito a cambios de pH y/o de osmolaridad?. Acta Biológica Colombiana, 21(1Supl), 265–277. https://doi.org/10.15446/abc.v21n1Supl.50591

ACM

[1]
Camacho Navarro, M. y Lozano, Y. 2016. ¿Están los CLC de Leishmania asociados con la adaptación del parásito a cambios de pH y/o de osmolaridad?. Acta Biológica Colombiana. 21, 1Supl (feb. 2016), 265–277. DOI:https://doi.org/10.15446/abc.v21n1Supl.50591.

ACS

(1)
Camacho Navarro, M.; Lozano, Y. ¿Están los CLC de Leishmania asociados con la adaptación del parásito a cambios de pH y/o de osmolaridad?. Acta biol. Colomb. 2016, 21, 265-277.

ABNT

CAMACHO NAVARRO, M.; LOZANO, Y. ¿Están los CLC de Leishmania asociados con la adaptación del parásito a cambios de pH y/o de osmolaridad?. Acta Biológica Colombiana, [S. l.], v. 21, n. 1Supl, p. 265–277, 2016. DOI: 10.15446/abc.v21n1Supl.50591. Disponível em: https://revistas.unal.edu.co/index.php/actabiol/article/view/50591. Acesso em: 19 abr. 2024.

Chicago

Camacho Navarro, Marcela, y Yenny Lozano. 2016. «¿Están los CLC de Leishmania asociados con la adaptación del parásito a cambios de pH y/o de osmolaridad?». Acta Biológica Colombiana 21 (1Supl):265-77. https://doi.org/10.15446/abc.v21n1Supl.50591.

Harvard

Camacho Navarro, M. y Lozano, Y. (2016) «¿Están los CLC de Leishmania asociados con la adaptación del parásito a cambios de pH y/o de osmolaridad?», Acta Biológica Colombiana, 21(1Supl), pp. 265–277. doi: 10.15446/abc.v21n1Supl.50591.

IEEE

[1]
M. Camacho Navarro y Y. Lozano, «¿Están los CLC de Leishmania asociados con la adaptación del parásito a cambios de pH y/o de osmolaridad?», Acta biol. Colomb., vol. 21, n.º 1Supl, pp. 265–277, feb. 2016.

MLA

Camacho Navarro, M., y Y. Lozano. «¿Están los CLC de Leishmania asociados con la adaptación del parásito a cambios de pH y/o de osmolaridad?». Acta Biológica Colombiana, vol. 21, n.º 1Supl, febrero de 2016, pp. 265-77, doi:10.15446/abc.v21n1Supl.50591.

Turabian

Camacho Navarro, Marcela, y Yenny Lozano. «¿Están los CLC de Leishmania asociados con la adaptación del parásito a cambios de pH y/o de osmolaridad?». Acta Biológica Colombiana 21, no. 1Supl (febrero 1, 2016): 265–277. Accedido abril 19, 2024. https://revistas.unal.edu.co/index.php/actabiol/article/view/50591.

Vancouver

1.
Camacho Navarro M, Lozano Y. ¿Están los CLC de Leishmania asociados con la adaptación del parásito a cambios de pH y/o de osmolaridad?. Acta biol. Colomb. [Internet]. 1 de febrero de 2016 [citado 19 de abril de 2024];21(1Supl):265-77. Disponible en: https://revistas.unal.edu.co/index.php/actabiol/article/view/50591

Descargar cita

CrossRef Cited-by

CrossRef citations1

1. Abelino Vargas Jiménez, Diana Carolina Ochoa Cabezas, Michael Delay, Itziar González Gómez, Marcela Camacho. (2022). Acoustophoretic Motion of Leishmania spp. Parasites. Ultrasound in Medicine & Biology, 48(7), p.1202. https://doi.org/10.1016/j.ultrasmedbio.2022.02.016.

Dimensions

PlumX

Visitas a la página del resumen del artículo

1066

Descargas

Los datos de descargas todavía no están disponibles.